

مزيد من الكتب العجانية

Books-Sea.com

أينشتين والنظرية النسبية

هل نحن نرى الدنيا على حقيقتها ؟ هل هذه السماء زرقاء فعلا . . وهل الحقول خضراء . . وهل الرمال صفراء ؟

وهل العسل حلو . والعلقم مر؟ هل الماء سائل . والجليد صلب؟ وهل الخشب مادة جامدة كها تقول لنا حواسنا؟ وهل حجارة الأرض مادة موات ، لاحركة فيها ولادبيب؟ وهل الزجاج شفاف كما يبدو لنا . والجدران صمّاء كما نراها؟ وهل الخط المستقيم هو أقصر مسافة بين نقطتين كما تقول لنا الهندسة التقليدية التي تعلمناها . وهل مجموع زوايا المثلث تساوى 7 ق؟

٣

وهل احداث الكون كلها ممتدة فى زمن واحد . . بحيث يمكن أن تتواقت بعضها مع بعض فى آن واحد فى أماكن متفرقة . . كها يتواقت خروج الموظفين مثلا من مختلف الوزارات فى ذات الوقت والساعة . . فنقارن أحداثًا تجرى فى الأرض مع أحداث تجرى فى الريخ . والزهرة وسديم الجبار . . ونقول إنها حدثت فى وقت واحد . . أو أن أحدها كان قبل الآخر . .

وهل يمكننا أن نقطع فى يقين أن جسمًا ما من الأجسام يتحرك وأن جسما آخر لايتحرك؟

كل هذه الأسئلة التي يخيل لك أنك تستطيع الإجابة عنها فى بساطة ، والتيكان العلماء يظنون أنهم قد انتهوا منها من زمن . . قد تحولت الآن إلى ألغاز . .

لقد انهار اليقين العلمي القديم . .

والمطرقة التى حطمت هذا اليقين ، وكشفت لنا عن أنه كان يقينًا ساذجا ، هى عقل أينشتين الجبار . . ونظريته التى غيرت الصورة الموضوعية للعالم . . نظرية النسبية . .

والنظرية النسبية قد عاشت سنوات منذ بداية وضعها فى سنة ١٩٠٥ إلى الآن فى برج عاجىّ لايقربها إلا المختصون . . وكان القارئ العادى يسمع عنها فى خوف كها يسمع عن

الكهانات الغامضة والطقوس الماسونية . . ولايجرؤ على الخوض فيها . .

ومن المأثور عن الدكتور « مشرّفة » أنه كان يقول دائما إن هذه النظرية لا يفهمها فى العالم كله إلّا عشرة . .

ولكن النظرية النسبية ترتبت عليها القنبلة الذرية . .

إنها لم تعد نظرية وإنما تحولت إلى تطبيقات خطيرة تمس كيان كل فرد وتؤثر فى مصيره . .

لقد خرجت من حيز الفروض والمعادلات الرياضية لتتحول إلى واقع رهيب . .

وأصبح من حق كل فرد أن يعرف عنها شيئا . . .

ولقد تعددت المحاولات من العلماء لتبسيطها وتقريبها إلى الفهم . . من ادنجتون إلى جيمس جينز . . إلى لنكولن بارنت . . إلى راسل . .

وكان أينشتين نفسه يجاول أن يبسط مافى نظريته من غموض ... وكان يقول إن قصر المعلومات على عدد قليل من العلماء بحجة التعمق والتخصص . يؤدّى إلى عزلة العلم . . ويؤدّى إلى موت روح الشعب الفلسفية وفقره الروحى ، وكان يكره الكهانة العلمية والتلفع بالغموض ، والادعاء . والتعاظم . وكان يقول إن الحقيقة بسيطة .

وفی آخر محاولاته التی أتمها فی عام ۱۹۶۹ کان یبحث عن قانون واحد یفسر به کل علاقات الکون .

ونظرية النسبية ليست كلها معادلات . . وإنما لها جوانب فلسفية .

وحتى المعادلات الرياضية . . يقول أينشتين إنها انبعثت فى ذهنه نتيجة شطحاته التى حاول فيها أن يتصور الكون على صورة جديدة . .

وأمام هذه الشطحات الفلسفية سوف نقف قليلا . . 'تاركين لعادلات الرياضية لأربابها من القادرين عليها ، محاولين أن نشرح بعض ما أراد ذلك العالم العظيم أن يقوله ، على قدر الإمكان ، إمكان فهمنا . .

وسوف نبدأ من البداية . . من قبل أينشتين . . من السؤال الذي بدأنا به المقال :

هل نحن نرى الدنيا على حقيقتها ؟ هل هذه السماء زرقاء . . وهل الحقول خضراء . . وهل الرمال صفراء ؟ هل العسل حلو . . والعلقم مر ؟ هل الماء سائل . . والجليد صلب ؟ وهل الخشب مادة جامدة كما تقول لنا حواسّنا ؟

وهل حجارة الأرض مادة موات لاحركة فيها ؟ وهل الزجاج شفاف . . والجدران صماء ؟ * * *

. . ليست هذه هي الحقيقة .

هذا مانراه . . ومانحسّه بالفعل . . ولكنه ليس كل الحقيقة . . فالنور الأبيض الذى نراه أبيض . . إذا مررناه خلال منشور زجاجي . . يتحلل إلى سبعة ألوان هي ألوان الطيف المعروفة الأصفر والبرتقالى والأحمر والأخضر والأزرق والبنفسجي . . إلخ . . فإذا حاولنا أن ندرس ماهية هذه الألوان لم نجد أنها ألوان . . وإنما وجدناها موجات لاتختلف فى شيء إلا فى طولها . . ذبذبات متفاوتة في ترددها . . وهذه كل الحكاية . . ولكن عيننا لاتستطيع أن ترى هذه الأمواج كأمواج . . ولاتستطيع أن تحس بهذه الذبذبات كذبذبات . . وانما كل ما يحدث أن الخلايا العصبية في قاع العين تتأثر بكل نوع من هذه الذبذبات بطريقة مختلفة . . ومراكز البصر في المخ تترجم هذا التأثر العصبي على شكل ألوان . . ولكن هذه المؤثرات الضوئية ليست ألوانا . . وإنما هي محض موجات واهتزازات . . والمخ بلغته الاصطلاحية . . لكى يميزها عن بعضها . . يطلق عليها هذه التعريفات التي هي عبارة عن

5

تصورات . . وهذه هي حكاية الألوان . .

والحقول التي نراها خضراع ليست خضراء . . وإنما كل مايحدث أن أوراق النباتات تمتص كل أمواج الضوء بكافة أطوالها ماعدا تلك الموجة ذات الطول المعين التي تدخل عيننا وتؤثر في خلاياها فيكون لها هذا التأثير الذي هو في اصطلاح المخ «أخضر» . .

وبالمثل . . أى لون . . ليس له لون . . وإنما هو مؤثر يفرقه المخ عن غيره بهذه الطريقة الاصطلاحية . . بأن يلونه . .

ويتضح هذا الخلط أكثر . حينما ننتقل إلى المثل الثانى . . العسل . .

فالعسل فى فمنا حلو . . ونحن نتلذذ به ونلحسه لحسا ونمصمصه بلساننا . . ولكن دودة المش لها رأى مختلف تماما فى العسل بدليل أنها لاتقربه ولاتذوقه بعكس المش الذى تغوص فيه وتلتهمه التهامًا وتبيض وتفقس وتعشش فيه . .

الحلاوة إذن لايمكن أن تكون صفة مطلقة موضوعية فى العسل . . وإنما هى صفة نسبية نسبة إلى أعضاء التذوق فى لساننا . . إنها ترجمتنا الاصطلاحية الخاصة للمؤثرات التى تحدثها ذرات العسل فينا . .

وقد يكون لهذه المؤثرات بالنسبة للأعضاء الحسية نى حيوان آخر

طعا مختلفا هو بالمرارة أشبه . . فإذا جئنا للسؤال الثالث لنسأل أنفسنا . . هل الماء سائل . . وهل الجليد صلب . . فإن المشكلة تتضح أكثر. .

فالماء والبخار والجليد . . مادة كيميائية واحدة تركيبها الكيميائى (اتحاد الأيدروجين بالأوكسجين ٢ : ١) . . ومابينها من اختلاف ليس اختلافًا فى حقيقتها وإنما هو اختلاف فى كيفيتها . .

فحينما نضع الماء على النار . . فإننا نعطيه حرارة . . أو بمعنى آخر طاقة . . فتزداد حركة جزيئاته وبالتالى تتفرق وتتفركش نتيجة اندفاعها الشديد فى كل اتجاه ويكون نتيجة هذه الفركشة عند لحظة معينة أن تتفكك تماما وتتحول إلى جزيئات سابحة بعيدة عن بعضها (غاز) . . فإذا فقدت هذه الحرارة الكمانة التى أخذتها عن طريق النار فإنها تعود فتبطئ من حركتها وتتقارب إلى بعضها عن طريق النار حتى تصل فى لحظة إلى درجة من التقارب هى التى نترجمها حرارة وبردناها أكثر وأكثر فإنها تبطئ أكثر وأكثر وتتقارب أكثر حي تصل إلى درجة من التقارب على أنها مرارة وبردناها أكثر وأكثر فإنها تبطئ أكثر وأكثر وتتقارب اكثر حرارة حتى تصل إلى درجة من التقارب بعر والما على أنها حرارة وبردناها أكثر وأكثر فإنها تبطئ أكثر وأكثر وتتقارب أكثر منابة على أنها حرابة من التقارب نترجمها بحواسنا على أنها مرارة وبردناها أكثر وأكثر فإنها تبطئ أكثر وأكثر وتتقارب أكثر

الحالة الغازية والسائلة والصلبة هي ظواهركيفية لحقيقة واحدة

هى درجة تقارب الجزيئات من بعضها البعض لمادة واحدة هى الماء . .

وشفافية الماء وعتامة الثلج سببها أن جزيئات الماء متباعدة لدرجة تسمح لنا بالرؤية من خلالها . .

ولا يعنى هذا أن جزيئات الثلج متلاصقة . . و إنما هى متباعدة هى الأخرى ولكن بدرجة أقل . وجزيئات كل المواد حتى الحديد مخلخلة ومنفصلة عن بعضها . . بل إن الجزىء نفسه مؤلف من ذرات منفصلة . . والذرة مؤلفة من بروتونات و إلكترونات هى الأخرى منفصلة ومخلخلة ومتباعدة تباعد الشمس عن كواكيها . كل المواد الصُلبة عبارة عن خلاء منثورة فيه ذرات . . ولو أن حسّنا البصرى مكتمل لأمكننا أن نرى من خلال الجدران لأن نسيجها مخلخل كنسيج الغربال . .

ولوكنا نرى عن طريق أشعة إكس لاعن طريق النور العادى لرأينا بعضنا عبارة عن هياكل عظمية ؛ لأن أشعة إكس تخترق المسافات الجزيئية فى اللحم . . وتراه فى شفافية الزجاج . . مرة أخرى رؤيتنا العاجزة هى التى ترى الجدران صماء . . وهى

ليست صماء . . بل هى مخلخلة أقصى درجات التخلخل . . ولكن وسائلنا المحدودة والأشعة التى نرى عن طريقها لاتنفذ فيها ، وإنما تنعكس على سطوحها وتبدو لنا وكأنها سدّ يقف فى طريق رؤيتنا . .

إنها جميعا أحكام نسبية تلك التي نطلقها على الأشياء.. (نسبة إلى حواسنا المحدودة) وليست أحكاما حقيقية.. والعالم الذي نراه ليس هو العالم الحقيقي.. وإنما هو عالم اصطلاحي بحت نعيش فيه معتقلين في الرموز التي يختلقها عقلنا.. ليدلنا على الأشياء التي لايعرف لها ماهية أو كنها.

والرسام التجريدى على حق حينما يحاول أن يعبر عما يراه . . على طريقته . . فهو يدرك بالفطرة أن مايراه بعينه ليس هو كل الحقيقة ، وبالتالى فهو ليس ملزما له . . وفى إمكانه أن يتلمس الحقيقة . لابعينه . . وإنما بعقله . . وربما بعقله الباطن . . أو وجدانه . . أو روحه .

وهو لايكون مجنونا . وقد نكون نحن المجانين . . ورجل العلم له وسائل أخرى غير رجل الفن . . الفنان يبحث عن الحقيقة معتمدًا على وسائله . . عن طريق الإلهام . . والروح . . والوجدان . . ورجل العلم يلجأ إلى الحسابات والمعادلات . . والفروض النظرية . . التى يحاول أن يتثبت منها بتجارب عملية . . وأينشتين فى مغامرته العقلية لم يكن يختلف كثيرًا عن الرسام التجريدى فى مغامرته الفنية .

11

ومعظم ماكتبه أينشتين فى معادلاته كان فى الحقيقة تجريدًا للواقع على شكل أرقام وحدود رياضية . . ومحاولة جادة من رجل العلم فى أن يهزم العلاقات المألوفة للأشياء ويزيحها لتبدو من خلفها لمحات من الحقيقة المدهشة التى تتخفى فى ثياب العادة والألفة . .

وماذا هناك فى الواقع المحسوس المألوف؟

إننا لا نرى الأشياء مشوّهة عن أصلها فقط . . وإنما لانراها إطلاقا . . وأحيانا يكون مانراه لاوجود له بالمرة . .

فهناك غير ألوان الطيف السبعة . . أمواج أقصر من أن ندركها هى فوق البنفسجية . . وأمواج أخرى أطول من أن ندركها هى تحت الحمراء . . وتكون النتيجة ألاً نراها مع أنها موجودة ويمكن إثباتها باللوح الفوتوغرافى الحساس . . وبالترمومتر . .

وعلى العكس نرى أحيانا أشياء لا وجود لها .. فبعض النجوم التي نراها بالتلسكوب في أعماق السماء تبعد عنا بمقدار ٥٠٠ مليون سنة ضوئية . أى أن الضوء المنبعث منها يحتاج إلى خمسمائة مليون سنة ليصل إلى عيوننا . . وبالتالى فالضوء الذى نلمحها به هو ضوء خرج منها منذ هذا العدد الهائل من السنين . . فنحن لانراها في الحقيقة . . وإنما نرى ماضيها السحيق الموغل في القدم . . أما ماهيتها الآن . . فالله وحده يعلم . . وربما تكون قد انفجرت واختفت . . أو انطفأت . . أو ارتحلت بعيدًا في أطراف ذلك

الحلاء الأبدى وخرجت من مجال الرؤية بكل وسائلها . . فحالها الآن لايمكن أن يصلنا خبره إلا بعد مضى خمسهائة مليون سنة . . إننا قد نكون محملقين فى شىء يلمع دون أن يكون له وجود بالمرة . .

> إلى هذه الدرجة يبلغ عدم اليقين . . وإلى هذه الدرجة يمكن أن تضلّلنا الحواس . مادليلنا فى هذا التيه . .

وكيف نهتدى إلى الحقيقة في هذه الظلمات المطبقة ! ؟ . .

کل شیء ذرّات

خضرة الحقول اليانعة . . وزرقة السماء الصافية . . وحمرة الورود الدامية . . وصفرة الرمال الذهبية . . وكلّ الألوان المبهجة التى نشاهدها فى الأشياء لاوجود لها أصلاً فى الأشياء . . وإنما هى اصطلاحات جهازنا العصبى وشفرته التى يترجم بها أطوال الموجات الضوئية المختلفة التى تنعكس عليه . إنها كآلام الوخز التى نشعر بها من الإبر . . ليست هى الصورة الحقيقية للإبر . . وإنما هى صورة لتأثرنا بالإبر . وبالمثل طعم الأشياء وراعتها وملمسها وصلابتها وليونتها وشكلها الهندسى وحجمها ، لاتقدّم لنا صورة حقيقية لما نلمسه ونشمه ونذوقه ، وإنما هى مجرد الطريقة التى نتأثر بها يهذه الأشياء . . إنها ونذوقه ، وإنما هى مجرد الطريقة التى نتأثر بها يهذه الأشياء . . إنها

ترجمة ذاتية لاوجود لها خارجنا .

كل مانراه ونتصوّره . . خيالات مترجمة لاوجود لها فى الأصل ، مجرد صور رمزية للمؤثرات المختلفة صوّرها جهازنا العصبى بأدواته الحسية المحدودة . .

أهى أحلام . . ؟

هل نحن نحلم . . ولاوجود لهذا العالم . . هل هذه الصفات تقوم فى ذهننا دون أن يكون لها مقابل فى الخارج ؟

البداهة والفطرة تننى هذا الرأى . . فالعالم الخارجى موجود . . وحواسنا تحيلنا دائما على شىء آخر خارجنا . . ولكن هناك فجوة بيننا وبين هذا العالم . . حواسنا لاتستطيع أن تراه على حقيقته . . وإنما هى تترجمه دائما بلغة خاصة وذاتية . . وبشفرة مختلفة . . ولو أنناكنا نحلم . . ولو أنناكنا نهذى كل منا على طريقته . . لما استطعنا أن نتفاهم . . ولما استطعنا أن نتفق على حقيقة موضوعية مشتركة . . ولكننا فى الحقيقة نتناول بين أيدينا تراجم حسّية . . ربما ناقصة . . وربما غير صحيحة . . ولكن از نعش مها على قدر الإمكان . . هناك حقيقة خارجنا . . إننا لانحلم . .

وإنما نحن سجناء حواسنا المحدودة . . وسجناء طبيعتنا

العاجزة . . ومانراه ينقل إلينا دَائما مشوّها وناقصًا ومبتورًا نتيجة رؤيتنه الكليلة . .

والنتيجة أن هٽاك أكثر من دنيا . .

هناك الدنيا كما هى فى الحقيقة وهذه لانعرفها . . ولايعرفها إلَّا الله .

وهناك الدنيا كما يراها الصرصور . . وهى مختلفة تماما عن دنيانا ؛ لأن الجهاز العصبى للصرصور مختلف تماما عن جهازنا . . فهو يرى الشمس بطريقة مختلفة . . وهو لايرى الشجرة كما نراها نحن شجرة . . وهو لايميّز الألوان . .

وهناك الدنيا كما تراها دودة الإسكارس . . وهى مختلفة تماما عن دنيا الصرصور . . فهى دنيا كلها ظلام . . دنيا خالية من المناظر . . ليس فيها سوى إحساسات بليدة تنتقل عن طريق الجلد . .

وهكذا كل طبقة من المخلوقات لها دنيا خاصة بها . .

ومنذ لحظة الميلاد يتسلم كل مخلوق بطاقة دعوة إلى محفل من محافل هذه الدنيا . . ويجلس إلى مائدة مختلفة ليتذوّق أطعمة مختلفة . . ولذائذ وآلام مختلفة .

وكل طبقة من المخلوقات تعيش سجينة فى تصوّراتها . . لاتستطيع أن تصف الصور التى تراها الطبقات الأخرى . .

١٦

لا يمكننا نحن الآدميون أن نتكلم مع الطيور أو الزواحف أو الديدان أو الحشرات لنشرح لها ما نراه من الدنيا

ولايستطيع الصرصور أن يخاطبنا ويصف لنا العالم الذى يعيش فيه . .

وربما لو حدث هذا فى يوم ما لأمكننا أن نصل إلى مايشبه حجر رشيد . . ولأمكننا أن نتوصّل إلى عدة شفرات ولغات مختلفة للدنيا . . نضعها تحت بعضها . . ونفكك طلاسمها . . ونستنبط منها الحقيقة . . التى تحاول هذه الشفرات الرمزية أن تصفها . . ونعرف سرّ هذه الدنيا . .

ولكن هذا الاتصال غير ممكن . . لأننا الوحيدون فى هذه الدنيا . . الذين نعرف اللغة . . وبقية المحلوقات عجماء . .

ماالحلّ . .

هل ننتظر حتى نسافر إلى الفضاء ونعبَّر على مخلوقات في المريخ تقرأ وتكتب ؟ !

علماء الرياضة يقولون لنا إنه لاداعى لهذا الانتظار . . فهناك طريقة أخرى . . طريقة صعبة ولكنها توصل إلى سكة الحقيقة . . هذه الطريقة هى أن نضع جانبا كل ماتقوله الحواس . . ونستعمل أساليب أخرى غير السمع والبصر والشم واللمس . .

نستعمل الحساب . . والأرقام . . نجرّد كل المحسوسات إلى أرقام . . ومقادير . .

القائمة الطويلة المعروفة للأشعة الضوئية . . الأصفر والبرتقالى والأحمر والبنفسجى والأزرق والأخضر . . إلخ . . نجرّدها إلى أرقام . .

ماذا يقول لنا العلم . . إنه يقول إن كل هذه الأشعة عبارة عن موجات لا تختلف إلاّ فى أطوالها وذبذباتها . . إذن هى فى النهاية مجرد أرقام . .

كل موْجة طولها كذا . . وذبذبتها كذا . . وكذلك كل صنوف الإشعاع . . أشعة إكس . . أشعة الراديوم . .

الأشعة الكونية . . كلها أمواج . . مثل أمواج اللاسلكى التى نسمع المذيع يقول كل يوم إنها كذا كيلو سيكل فى الثانية . . مجرد أرقام . . نستطيع أن نقيسها ونحسيها ونجمعها ونطرحها . . إذن نغمض عيننا ونفكر بطريق جديدة . .

وبدل أن نقول اللون الأخضر . . واللون الأحمر . . نقول كذا كيلو سيكل ثانية . .

والذى أغمض عينيه وبدأ يفكر بهذه الطريقة الجديدة التى أحدثت انقلابا فى العلوم . كان هو العالم الرياضي ماكس بلانك

الذي طلع في سنة ١٩٠٠ بنظريته المعروفة في الطبيعة النظرية الكمّية . . (Quantum Theory)

وقد بدأ من حقيقة بسيطة معروفة . . أنك إذا سخّنت قضيبًا من الحديد . . فإنه فى البداية يحمرَ ثم يتحوّل إلى برتقالى ثم أصفر ثم أبيض متوهج . .

إذن هناك علاقة حسابية بين الطاقة التي يشعها الحديد الساخن وطول أو ذبذبة الموجة الضوئية التي تنبعث منه . . هناك معادلة . .

وبدأ يبحث عن هذه المعادلة حتى عثر عليها . .

وجد ببساطة أن الطاقة المشعّة مقسومة على الذبذبة (ن) تساوى دائما كمَّا ثابتًا (مثل النسبة التقريبية فى الدائرة) هذا الكمّ أسماه ثابت بلانك (هـ) .

والمعادلة هى : الطاقة = هـ × ن . وهى معادلة تقوم على افتراضٍ بأن الطاقة المشعة تنبعث فى كميات متتابعة . . فى دفعات . . أو حزم . . أو حبيبات من

الطاقة . . أو ذرات . وأطلق على هذه الذرات الضوئية اسم «فوتونات » . . وفى رسالة نال عليها أينشتين جائزة نوبل قدم دراسة وافية بالمعادلات والأرقام عن العلاقة بين .هذه الفوتونات الضوئية

الساقطة على لوح معدنى وبين الكهرباء التى تتولّد منه . . وعلى أساس هذه المعادلات قامت فكرة اختراع التليفزيون فيا بعد . .

يقول أينشتين إن من الظاهرات المعروفة فى المعمل أنك إذا أسقطت شعاعًا من الضوء على لوح معدنى فإن عددًا من الإلكترونات تنطلق من اللوح . . ولا تتأثر سرعة انطلاق هذه الإلكترونات بشدّة الضوء ، فمها خفّ الضوء ومها ابتعد مصدره فالإلكترونات تنطلق بسرعة ثابتة . . ولكن بعدد أقل . . وإنما فالإلكترونات تنطلق بسرعة ثابتة . . ولكن بعدد أقل . . وإنما تزداد هذه السرعة كلما كانت الموجة الضوئية الساقطة عالية الذبذبة . . ولهذا تزيد فى الأشعة البنفسجية وتقلّ فى الحمراء . وهو يفسر انطلاق هذه الإلكترونات بأن الضوء لايسقط على اللوح المعدنى فى سيّال متصل وإنما فى حزم من الطاقة . . « فوتونات » وتصطدم هذه الموتونات البلياردو فتطلقها حرة خارج المعدنى كما تصدم العصا بكرات البلياردو فتطلقها حرة خارج

وكلما كانت الأشعة الضوئية ذات ذبذبة عالية (البنفسجية مثلا) كلما كان الفوتون يختزن طاقة أكثر . . كلما أطلق الإلكترونات بسرعة أكثر . .

وربط هذه العلاقات في سلسلة من المعادلات الرياضية . .

وعمد التليفزيون إلى تطبيق هذه النظرية فى جهاز الإرسال التليفزيونى . . فأنت حينما تجلس أمام كاميرا التليفزيون فإنها تنقل صورتك التى هى عبارة عن نقط من الظل ونقط من النور إلى اللوح المعدنى الحساس . .

ونقط النور ونقط الظل الساقطة على اللوح المعدنى تطلق سيّالاً من الإلكترونات يتفاوت فى العدد وفى السرعة حسب الظل والنور فى الصورة . . وهذه الخفقات الإلكترونية الكهربائية تنتقل إلى عمود الإرسال وتذاع على شكل موجات مغناطيسية كهربائية إلى أجهزة الاستقبال . .

وأينشتين لم يكن يفكر حينما وضع معادلاته فى اختراع التليفزيون

وعلماء الرياضة لم يثر اهتمامهم فى ذلك الحين ولافيا بعد . ظهور التليفزيون . . وإنما الذى أثارهم هو هذا الافتراض الجديد الذى أقام عليه ماكس بلانك معادلته فى النظرية الكمية . . وأقام عليه أينشتين معادلاته فى الظاهرة الضوئية الكهربائية . . إن الضوء ينطلق فى ذرات . . أو فوتونات . . لافى أمواج متصلة . . فالضوء حتى ذلك الحين كانت طبيعته مؤجية . . فكيف يصبح شأنه شأن المادة . . مؤلف من ذرات . . أو فوتونات . .

وماذا تكون هذه الفوتونات . . هل هي كرات من الطاقة لها

حيز . . ولها أوضاع فى المكان . . شأنها فى ذلك شأن جزيئات المادة . . وإذا كان الضوء ذرات . . فكيف يتصرّف كما لو كان أمواجًا .

لماذا يحيد الضوء حينما يدخل من ثقب ضيق كما تحيد أمواج البحر حينما تدخل فى مضيق . . ولماذا ينعطف الضوء حول شعرة رفيعة فلايبدو لها ظل . . كما تنعطف الأمواج وتلتحم حول عصا مرشوقة. فى البحر . .

وكيف نفرّق بين المعادلات التي تحسب الضوء على أساس أن طبيعته مؤجيّة متصلة وبين المعادلات الجديدة التي تحسب الضوء على أساس أن طبيعته ذرية متقطعة . . أم أن للضوء طبيعة مزدوجة . . وكيف ؟ ! ! كيف تكون الحقيقة بهذا التناقض . .

أم أنه لاتوجد حقيقة واحدة ! ؟ . .

مبدأ الشك

هل الضوء أمواج ؟ هل الضوء ذرات ؟

١,

كانت المعركة محتدمة بين العلماء الذين يقولون بأن للضوء طبيعة موجية . . وبين العلماء الذين يقولون بأن طبيعته مادية ذرية . . حينا تقدم عالم نمسوى اسمه شرودنجر بمجموعة من المعادلات . . ليعلن نظرية اسمها « الميكانيكا الموجية » .

وفى هذه النظرية أثبت شرودنجر بالتجربة أن حزمة من الإلكترونات ساقطة على سطح بللورة معدنية تحيد بنفس الطريقة التى تحيد بها أمواج البحر التى تدخل من مضيق . . واستطاع أن يحسب طول موجة الإلكترونات التى تحيد بهذه الطريقة . .

وأعقبت هذه المفاجأة مفاجآت أخرى . . فقد أثبتت التجارب التي أجريت على حزم من الذرات ، ثم على حزم من الجزيئات . . أنها بإسقاطها على بللورة معدنية تتصرف بنفس الطريقة الموجية وأن طول موجاتها يمكن حسابه بمعادلات شرودنجر... وبهذا بدأ صرح النظرية المادية كله ينهار . إن الهيكل كله يسقط ، ويتحول إلى خواء . . إن كهان العلوم دأبوا من سنين على أن يعلمونا أن الذرة عبارة عن معار مادی يتألف من نواة (بروتون أو أكثر) تدور حولها الإلكترونات في أفلاك دائرية كما تدور الكواكب حول الشمس . . . وأكثر من هذا حسبوا عدد الإلكترونات في كل ذرة وقالوا لنا إنها إلكترون واحد فى ذرة الأيدروجين ثم تزيد فى العناصر الثقيلة حتى تبلغ ٩٢ إلكترون في ذرة اليورانيوم ، وأن كل ذرة لها وزن ذرى . . وأثبتوا كل هذا بالمعادلات . .

فماذا يقولون فى هذا الذى يهدم لهم صرح الهيكل ليقول إنه لايحتوى على شىء له كيان مادى أو حيز ، وإنما كل ماهناك طاقة متموجة ، وأكثر من هذا يقدم لهم الإثبات بالمعادلات ، والتجارب . . وكانت بلبلة علمية لاحدّ لها .

كيف يمكن أن يقوم البرهان على شيئين متناقضين . . وهل

يمكن أن يكون للشىء طبيعة متناقضة . كيف يمكن أن تكون للمادة صفات موجية ، وللضوء صفات مادية . .

وتقدم عالم ألمانى هو « هايزنبرج » وبرفقته عالم آخر هو « بورن » ليقول إنه من الممكن تخطّى هذه الفجوة ، وأنه لاتوجد مشكلة ، وقدم مجموعة من المعادلات يمكن عن طريقها حساب الضوء على أنه أمواج أو على أنه ذرات ، ولمن يريد أن يختار الافتراض الذى يعجبه ، وسيجد أن المعادلات تصلح للغرضين فى وقت واحد . .

العلماء يسألون . .

وهايزنبرج يردّ ببساطة . .

الحقيقة المطلقة لاسبيل إلى إدراكها .

العلم لايستطيع أن يعرف حقيقة أى شىء ، إنه يعرف كيف يتصرف ذلك الشىء فى ظروف معينة ، ويستطيع أن يكشف علاقاته مع غيره من الأشياء ، ويحسبها . ولكنه لايستطيع أن يعرف ماهو .

لاسبيل أمام العلم لإدراك المطلق . [العلم يدرك كميات ، ولكنه لايدرك ماهيات . . العلم لايمكنه أن يعرف ماهو الضوء . . ولاماهو الإلكترون . .

Y٧

وحينما يقول إن الأشعة الضوئية هى موجات كهربية مغنطيسية أو فوتونات فإنه يحيل الألغاز إلى ألغاز أخرى . . فما هى الموجات الكهربائية المغنطيسية ؟ حركة فى الأثير ؟ . . وماالحركة . . وماالأثير . ؟

وما الفوتونات ؟ حزم من الطاقة ؟ . وماالطاقة ؟

العلم لايمكن أن يعرف ماهية أى شىء . إنه يستطيع أن يعرف سلوك الشىء وعلاقاته بالأشياء الأخرى والكيفيات التى يوجد بها فى الظروف المختلفة . . ولكنه لايستطيع أن يعرف حقيقته .

وحينما يكتشف العلم أن الضوء فى إحدى التجارب يتصرف بطريقة مؤجية ، وفى تجربة أخوى يتصرف بطريقة مادية ذرية ، فلا تناقض هناك ؛ لأن ما اكتشفه العلم هو مسلك الضوء ، والكيفيات التى ينطلق بها فى الظروف المختلفة ، لاحقيقة الضوء ، ويمكن أن تكون للضوء طبيعة مزدوجة . .

والصفة الثانية للعلم . . أن أحكامه كلها إحصائية وتقريبية ، لأنه لايجرى تجاربه على حالات مفردة ، لايمسك ذرة مفردة ليجرى عليها تجاربه ، ولايقبض على إلكترون واحد ليلاحظه ، ولايمسك فوتونا واحدًا ليفحصه ويتفرج عليه . . وإنما يجرى تجاربه على مجموعات . . على شعاع ضوء مثلا (والشعاع يحتوى على بلايين بلايين الفوتونات) ، أو جرام من مادة والجرام يحتوى على

بلايين بلايين الذرات . . وتكون النتيجة أن الحسابات كلها حسابات إحصائية ، تقوم على الاحتمالات . . وعلى الصواب التقريبي . .

والقوانين العلمية أشبه بالإحصائيات التي يمسح بها الباحثون الاجتماعيون المجتمع لتقرير أسباب الانتحار ، أو أسباب الطلاق . . أو علاقة السرطان بالتدخين . أو الخمر بالجنون . . وكل النتائج تكون في هذه الحالة نتائج احتمالية وإحصائية لأنها جميعها متوسطات حسابية عن أعداد كبيرة .

أما إذا حاول العلم أن يجرى تجاربه على وحدة أساسية . . كان يدرس ذرة بعينها أو يلاحظ إلكترونا واحدًا بالذات . . فإنه لا يمكنه أن يخرج بنتيجة أو معرفة . . لأنه يصطدم باستحالة نهائية . ولكى يثبت هايزنبرج هذه الاستحالة تخيل أن عالما يحاول أن يشاهد الإلكترون . فعليه أوّلاً أن يستخدم ميكروسكوبا يكبر مائة مليون مرة . . وعلى افتراض أنه حصل على هذا الميكروسكوب ، فإن هناك صعوبة أخرى . . وهى أن الإلكترون أصغر من موجة الضوء . . فعليه أن يختار موجة قصيرة . . مثل أشعة إكس . . ولكن أشعة إكس لاتصلح للرؤية . . إذن عليه أن يستخدم أشعة الراديوم .

وبافتراض أنه حصل على هذه الأشياء ، فإنه فى اللحظة التى

يضع فيها عينيه على الميكروسكوب ويطلق فوتونا ضوئيا ليرى به الإلكترون فإن الفوتون سوف يضرب الإلكترون كما تضرب العصا كرة البلياردو ويزيحه من مكانه مغيّرًا سرعته (لأن الفوتون عبارة عن شحنة من الطاقة) . . فهو فى محاولته لتسجيل وضع الإلكترون وسرعته لن يصل إلى أى نتيجة . . إذ فى اللحظة التى يسجل فيها مكانه تتغير سرعته . . وفى اللحظة التى يحاول فيها تسجيل سرعته يتغير مكانه . . لأن إطلاق الضوء عليه لرؤيته ينقله من مكانه ويغير سرعته .

إن عملية الملاحظة التى يقوم بها تغيّر من النتيجة المطلوبة . إنه يحاول أن يرى طبيعة الإلكترون ليسجلها . . ولكن عملية الرؤية تغيّر أول ماتغير تلك الطبيعة التى يجرى وراء تسجيلها . . فهو ينقل الإلكترون من مكانه فى اللحظة التى يحاول فيها أن يسجل مكانه .

وهكذا يكون التعامل مع الوحدات الأساسية للطبيعة مستحيل . . فحينما نصل إلى عالم الذرة الصغير . . يستحيل علينا التحديد . . وفى نفس الوقت يتعطل قانون السببية ، فلا يصبح ساريًا ؛ لأن عملية الملاحظة تتدخل بين السبب والنتيجة وتكسر حلقة السببية من منتصفها وتدخل هى بذاتها كسبب يغير من النتيجة بشكل يجعل من الستحيل معرفتها أو حسابها . .

إننا نكون أشبه بالأعمى الذى يمسك بقطعة مربعة من الثلج ليتحسس شكلها ومقاييسها . . وهى فى اللحظة التى يتحسسها تذوب مقاييسها بين يديه ، فيفقد الشىء الذى يبحث عنه بنفس العملية التى يبحث بها عنه .

وهكذا تتعطّل القوانين حينما تصل إلى منتهى أجزاء ذلك الكون الكبير وتتوقف عند أصغر وحدة فى وحداته . . فلاتعود سارية ولاتعود صالحة للتطبيق .

وبالمثل هى تتعطل أحيانا حينما نحاول أن نطبقها على الكون بأسره ككل . . فقانون السببية أيضاً لايعود سارياً بالنسبة للكون ككل . . إذ أن اعتبار الكون صادرًا عن سبب واعتباره خاضعاً للسببية يجعل منه جزءًا صادرًا عن جزء آخر ويتناقض مع كليته وشموله . .

القوانين تصطدم مع الحدّ الأكبر ومع الحدّ الأصغر للكون ولاتعود سارية . .

والعقل يصطدم بالاستحالة حينما يحاول أن يبحث فى المبدأ وفى المنتهى . . لأنه لم يجهّز بالوسائل التى يقتحم بها هذه الحدود . بهذا البحث الفلسنى الرياضى . . استطاع هايزنبرج أن يفسر الطبيعة المزدوجة للضوء . ووضع المعادلات التى تصلح لتفسير الضوء على الأساس المادى وعلى الأساس الموجى فى نفس الوقت .

واعتبر القوانين فى هذا المجال قوانين احتمالية إحصائية ، تعبر عن سلوك مجاميع هائلة من بلايين بلايين الفوتونات . أما الفوتون نفسه فشىء لايمكن تحديده . وهل يمكن تحديد نقطة فى ريح عاصفة فى الظلام . وهل يمكنك أن تقول إن هذه النقطة تشغل هذا المكان بالذات . كل مايمكن للعلم أن يدركه هو « الكميات ، و « الكيفيات » ولكن لاسبيل إلى إدراك الماهيات .

لكن أينشتين كانت له وجهة نظر أخرى . كان يرى فى العالم وحدةً منسجمة . كان يرى العالم الكبير بشموسه وأفلاكه ، والعالم الصغير بذراته وإلكتروناته خاضعًا كله لقانون واحد بسيط . وكان يرى أن العقل فى إمكانه أن يكتشف هذا القانون . وكان يبحث جاهدًا عنه . وفى سنة ١٩٢٩ أعلن عن نظرية « المجال الموحد » . . ثم عاد بعد ذلك ورفضها واستبعدها . . وعاود البحث من جديد .

المكان

كان أول سؤال سأله أينشتين : هل يمكن تقدير وضع أى شىء فى المكان ؟ وهل يمكن الإثبات بشكل مطلق وقاطع بأن جسما من الأجسام يتحرك وجسما آخر ثابت لايتحرك ؟ راكب يمشى على ظهر سفينة فى عرض البحر . لو أردنا أن نقدر موضعه فسوف نحاول أن نقيس مكانه بالنسبة للصارى أو المدخنة . . فنقول مثلا إنه على بعد كذا من مدخنة السفينة . . ولكن هذا التقدير خاطئ لأن المدخنة ليست ثابتة وإنما هى تتحرك مع السفينة التى تتحرك بأسرها فى البحر . . إذن نحاول أن نعرف موضعه بالنسبة للأرض فنقول إنه عند تقاطع خط طول كذا بخط

عرض كذا ولكن هذا التقدير خاطئ أيضا لأن الأرض بأسرها تتحرك فى الفضاء حول الشمس . إذن نحاول أن نقدر وضعه بالنسبة لللممس . ولكن الشمس تتحرك مع مجموعتها الشمسية كلها فى الفضاء حول مركز مدينتها النجمية الكبرى . . إذن نحاول أن نعرف موضعه بالنسبة للمدينة النجمية الكبرى . . لافائدة أيضاً . . فالمدينة النجمية هى الأخرى جزء من مجرة هائلة اسمها سكة التبانة . وهى تتحرك حول مركز التبانة . . إذن نحاول أن نعرف وضعه بالنسبة للتبانة . . للأسف – لأمل – لأن التبانة هى الأخرى تتحرك مع عدد من المجرات حول مصيبة أخرى لا يعلمها إلّا الله .

وحتى بافتراض أننا أحطنا بكل مجرات الكون ومدنه النجمية الهائلة وعرفنا حركاتها كلها بالنسبة للكون . . لافائدة أيضاً . . لأن الكون كله فى حالة تمدّد . . وكل أقطاره فى حالة انفجار دائم فى جميع الاتجاهات . .

إذن هناك استحالة مؤكدة . .

ولاسبيل لمعرفة المكان المطلق لأى شىء فى الفضاء . . وإنما نحن فى أحسن الأحوال نقدر موضعه النسبى بالنسبة إلى كذا وكذا . . أما وضعه الحقيقى فمستحيل معرفته . . لأن كذا وكذا فى حالة حركة هى الأخرى .

وأغلب الظن أنه لايوجد شيء اسمه « وضع حقيقي » . .

فإذا جئنا إلى الحركة فالمشكلة هى نفس المشكلة . فأنت فى قطار حينما يمر بك قطار آخر قادم فى عكس الاتجاه . . فإنك للوهلة الأولى يختلط عليك ، يحيّل إليك أن قطارك واقف والآخر هو الذى يتحرك . وأنت عادة تقدر سرعته خطأ فيخيل إليك أنه يسير بسرعة خاطفة (بينما هو فى الراقع يسير بمعدل سرعة القطار الذى تركبه) .

وإذا كان يسير فى نفس اتجاه قطارك . . وموازٍ له . ./فأنت يخيل إليك أن القطارين واقفان .

فإذا أغلقت نوافذ قطارك خيل إليك أنه ساكن لايتحرك . ولاسبيل للخروج من هذا الخلط إلّا بالمقارنة بمرجع ثابت . كأن تفتح النوافذ وتنظر إلى الأشجار أو أعمدة البرق . فتدرك بالمقارنة أن القطار يتحرك بالنسبة لها . .

فإذا كان قطارك واحدًا من عدة قطارات فلاسبيل إلى تمييز حركاتها من سكونها إلّا بالخروج منها والتفرج عليها من بعيد من على رصيف محطة ثابتة . .

القطع إذن بحركة الجسم وسكونه يحتاج إلى رصيف ثابت للملاحظة ، وبدون مرجع ثابت لايمكن معرفة الحركة من السكون ، وعلى الأكثر يمكن معرفة الحركة النسبية فقط . . فإذا تركنا القطارات وجئنا إلى الكون فالمعروف أنه فى حالة

حركة ككل وكأجزاء ، الأرض مثلا تدور حول محورها بسرعة ألف ميل فى الساعة ، وحول الشمس بسرعة عشرين ميلا فى الثانية . والشمس تتحرك ضمن مجموعتها الشمسية بسرعة ١٣ ميلا فى الثانية حول مدينها النجمية ، والمدينة النجمية تتحرك داخل سكة التبانة بسرعة ماتى ميل فى الثانية وسكة التبانة تتحرك نحو المجرات الأخرى بسرعة مائة ميل فى الثانية . . إلخ . .

وقل تعب نيوتن من مشكلة البحث عن الحركة الحقيقية ، وظل يتخبط من حركة نسبية إلى حركة نسبية ، فحاول الخروج من المشكلة بافتراض أن هناك جسمًا ساكناً تمامًا يوجد في مكان ما بعيد غير معروف ، تقاس به الحركة الحقيقية ، ثم عاد فاعترف بعجزه عن البرهنة على وجود هذا الجسم الثابت ، واعتبر أن الشيء الثابت هو الفضاء نفسه واستمر على هذه العقيدة بدوافع دينية ، قائلا أن الفضاء يدل على وجود الله ، ولم تنفع بالطبع هذه الدروشة . ولم يكن العلماء أقل دروشة من نيوتن فقد افترضوا مادة ثابتة تملأ الفضاء – هي الأثير ، وبرهنوا على وجود الأثير بالطبيعة المُوجية للضوء قائلين إن الأمواج لابدّ لها من وسط مادّى تنتشر فيه كما ينتشر موج البحر في الماء وأمواج الصوت في الهواء . . كذلك أمواج الضوء لابد لها من وسط .

وحينما أثبتت التجارب أن الضوء يمكن أن ينتشر فى الهواء

المفرغ فى ناقوس ، قالوا بوجود مادة اسمها الأثير تملأكل الفراغات الكونية ، واعتبروا هذا الأثير المزعوم مرجعًا ثابتاً يمكن أن تنسب إليه الحركات وتكتشف به الحركات الحقيقية . . وفى سنة ١٨٨١ أجرى العالمان ميكلسون ومورلى تجركة حاسمة بغرض إثبات وجود الأثير . .

وفكرة التجربة تتلخص فى أن الأرض تتحرك خلال الأثير بسرعة عشرين ميلا فى الثانية ، فهى بذلك تحدث تيارًا فى الأثير بهذه السرعة ، فلو أن شعاع ضوء سقط على الأرض فى اتجاه اللمار فإنه لابد ستزداد سرعته بمقدار العشرين ميلا ، فإذا سقط فى اتجاه مضاد للتيار فلابد أن سرعته سوف تنقص بمقدار العشرين ميلا ، فإذا كانت السرعة المعروفة للضوء ١٨٦٢٨٤ ميلا فى الثانية ، فإنها ستكون فى التجربة الأولى ١٨٦٣٠٤ وفى التجربة الثانية ستكون فى التجربة الأولى ١٨٦٣٠٤ وفى التجربة الثانية

وبعد متاعب عديدة قام ميكلسون ومورلى بتنفيذ التجربة بدقة ، وكانت النتيجة المدهشة أنه لافرق بين سرعتى الضوء فى الاتجاهين ، وأنها ١٨٦٢٨٤ بدون زيادة أو نقصان . وأن سرعة الأرض فى الأثير تساوى صفر . وكان معنى هذا – أن يسلم العلماء بأن نظرية الأثير كلام

فارغ . . ولا وجؤد لشىء اسمه الأثير . . أو يعتبروا أن الأرض ساكنة فى الفضاء.. وكانهتْ نظرية الأثير عزيزة عند العلماء لدرجة أن بعضهم شكَّ في حركة الأرض واعتبرها ساكنة فعلا . . أما أينشتين فكان رأيه في المشكلة ، أن وجود الأثير خرافة لاوجاد لها ، وأنه لايوجد وسط ثابت . ولامرجع ثابت في الدنيا ، وأن\الدنيا في حالة حركة مصطخبة . . ا وبهذا لايكون هناك وسيلة لأى تقدير مطلق بخصوص الحركة أو اللسكون ، فلايمكن القطع بأن جسمًا ما يتحرك وأن جسما ما ثابت . وإنما كل مايقال إن الجسم كذا يعتبر متحركا بالنسبة إلى الجسم كذا ، كل ماهناك . حركة نسبية أما الحركة الحقيقية فلا وجود لها . . كما وأن السكون الحقيقي لاوجود له أيضاً ، والفضاء الثابت لامعنى له . . ويؤيد هذا رأى قديم لفيلسوف اسمه ليبنتز يقول فيه : إنه لايوجد شيء اسمه فضاء . . وماالفضاء سوى العلاقة بين الأجسام بعضها البعض . .

وكانت هناك مشكلة ثانية تفرعت عن تجربة ميكلسون ومورلى هى ثبات سرعة الضوء بالرغم من اختلاف أماكن رصدها . .

وقد تأكد بعد هذا أن هذه السرعة ثابتة لابالنسبة لزوايا الرصد المختلفة على الأرض وحدها . وإنما هي ثابتة بالنسبة للشمس والقمر والنجوم والنيازك والشهب وأنها أحد الثوابت الكونية إ وقد استخلص أينشتين من هذه الحقيقة قانونه الأول في النسبية ، وهو أن قوانين الكون واحدة لكل الأجسام التي/ تتحرك يحركة منتظمة . ولشرح هذا القانون نورد هذا المثل : مثل الراكب على المُسفينة الذي يتمشى على سطحها بسرعة ميل واحد في الساعة . لوُ أن السفينة كانت تسير بسرعة ١٥ ميلاً واحد في الساعة . لكانك سرعته بالنسبة إلى البحر ١٦ ميلا في الساعة (١٥ + ١) . ولو أنه غيّر اتجاهه وسار بالعكس (بعكس اتجاه السفينة) لأصبحت سرعته بالنسبة إلى البحر (١٥ – ١) ١٤ ميلاً في الساعة . . برغم أنه لم يغير سرعته في الحالين ، وبرغم أن سرعته في الاتجاهين كانت ميلاً واحدًا في الساعة . ومعنى هذا أنه وهو نفس الشخص يسير بسرعتين مختلفتين ١٤ و ١٦ في نفس الوقت ، وهذه استحالة . وأينشتين يكشف سرّ هذه الاستحالة قائلا إن هناك خطأ حسابيًّا . والخطأ الحسابي هنا هو الإضافة والطرح لكميات غير متجانسة . . واعتبار أن المسافة المكانية لحادثة يمكن أن ينظر إليها

٣٩

مستقلة عن الجسم الذي اتخذ مرجعًا لها . . وهو هنا الراكب . . والسرعة ميل واحد في الساعة هي سرعة الراكب والمسافة هنا مرجعها الراكب . . أما الـ ١٥ ميل سرعة السفينة فهي بالنسبة إلى البحر . ولايمكن إضافة الـ ١٥ إلى الواحد لأنهما مسافتين من نظامين مختلفين مرجعها مختلف . . ونسبتهما مختلفة . . فالحساب هنا خطأ تبعا لقانون النسبية الأول الذي يقول بوحدة القوانين للأجسام التي تتحرك بجركة منتظمة داخل نظام واحد .

والقانون لاينطبق على المسافة المكانية وحدها وإنما هو أيضًا ينطبق على الفترات الزمنية . . فالفترة الزمنية لحادثة لايمكن أن ينظر إليها مستقلة عن حالة الجسم المتخذ مرجعاً لها . .

والمثل الوارد عن راكب السفينة يؤكد هذا أيضا . . فسرعة الراكب وهى ميل ساعة لاتقبل الإضافة إلى سرعة السفينة ١٥ ميل ساعة حيث إن المرجعين اللذين تنتسب إليهما هاتين الفترتين الزمنيتين مختلفان .

وهذا يجرّنا إلى الحلقة الثانية فى النظرية النسبية . . وهى الزمان . .

لقد رفض أينشتين فكرة المكان المطلق . . واعتبر أن المكان دائما مقدار متغير ونسبى ، واعتبر التقدير المطلق لوضع أى جسم فى المكان مستحيلا ، وإنما هو فى أحسن الحالات يقدّر له وضعه

بالنسبة إلى متغيّر بجواره
كما اعتبر إدراك الحركة المطلقة لجسم يتحرك بانتظام أمرا
مستحيلا وبالمثل إدراك سكونه المطلق . إنه عاجز عن اكتشاف الحالة الحقيقية لجسم من حيال الحركة
إنه عاجز عن اكتشاف الحالة الحقيقية لجسم من حيك الحركة
والسكون المطلقين طالما أن هذا الجسم في حالة حركة منتظمة
وكل مايستطيع أن يقوله إن هذا الجسم يتحرك حركة نسبيةً معينة
بالنسبة إلى جسم آخر .
وهناك مثل طريف يضربه العالم الرياضي هنري بوانكاريه كعلى
هذا العجز فهو يقول : لنتصوّر معًا أن الكون أثناء استغراقنا لُ
النوم قد تضاعف في الحجم ألف مرة كل شيء في الكون بما في/
ذلك السرير الذي ننام عليه بما في ذلك الوسادة والغرفة والشباك
والعارة والمدينة والسماء والشمس والقمر والنجوم بما في ذلك
أجسامنا نحن أيضا بما في ذلك الذرات والجزيئات والأمواج
بما في ذلك أجهزة القياس العيارية التي نقيس بها .
ماذا يحدث لنا حينما نستيقظ
يقول بوانكاريه في خبث شديد إننا لن نلاحظ شيئًا
ولن نستطيع أن ندرك أن شيئا ما قد حدث ولو استخدمنا كل
ما نملك من علوم الرياضة .
ان الكون قد تضاعف في الحجم ألف مرة هذا صحيح ،

٤١

11

ولكن كل شيءقد تضاعف بهذه النسبة فى ذات الوقت . . والنتيجة أن النسب الحجمية العامة تظل محفوظة بين الأشياء بعضها البعض .[[

ونفل القصة تحدث إذا تضاعفت سرعة الأشياء جميعها أثناء النوم بغس النسبة فإننا نصحو فلاندرك أن شيئا ما قد حدث بسبب عجزنا عن إدراك الحركة المطلقة . . ولأننا نقف فى إدراكنا عند الحركة النسبية وهى فى قصتنا ثابتة . . لأن نسبة كل حركة إلى الحركة بجوارها ثابتة رغم الزيادة المطلقة والعامة للحركة . . لأننا أيضا قد تصاعفت حركاتنا وسرعاتنا ونشاطنا الحيوى .

ويقول أينشتين إن هناك استثناء واحدا يمكن أن ندرك فيه الحركة المطلقة هو اللحظة التى تفقد الحركة انتظامها فتتسارع أو تتباطأ فندرك أن القطار الذى نركبه يتحرك عندما يبطئ استعدادًا للفرملة أو تغيير الاتجاه . . فى هذه اللحظة فقط نستطيع أن نجزم أننا نجلس فى مركبة متحركة ونستطيع أن نقول بحركتها المطلقة دون حاجة إلى مشاهدتها من رصيف منفصل .

وسوف نرى أنه حتى هذا الاستثناء الواحد قد عاد أينشتين فنقضه فى نهاية بحثه . .

هذا ماقاله أينشتين عن المكان وعن الحركة/في المكان . . فماذا قال عن الزمان .. إن المكان والزمان هما حدّان غير منفصلين في الحركة / . فماذا قالت النسبية عن هذا الحدّ الثاني . ؟

الزمان لاشىء يبعث على الحيرة أكثر من هذه الكلمة المبهمة الغامضة . . الزمان . . ؟ ماهو الزمان . . ؟ هناك زمان نتداوله فى معاملاتنا ونعبر عنه بالساعة واليوم والشهر . وهناك زمان نفساني داخلي يشعر به كل منا في دخيلة نفسه . . والزمان الخارجي الذي نتداوله زمان مشترك . . نتحرك فيه كما يتحرك غيرنا . . نحن فيه مجرد حادثة من ملايين الحوادث . . ومرجعنا فيه تقويم خارجي . . أو نتيجة حائط . أما الزمن الداخلي فهو زمن خاص . . لايقبل القياس . . لأنه

لامرجع له سوى صاحبه . . وصاحبه يختلف في تقديره . . فهو يشعر به شعول غير متجانس . . لاتوجد لحظة فيه تساوى اللحظة الأخرى . إ. فهناك اللحظة المشرقة المليئة بالنشوة التي تحتوى على أقدار العلمركله . . وهناك السنوات الطويلة الفارغة التي تمر رتيبة خاوية لمأنها عدم . . وهو زمن متصل في ديمومة شعورية وكأنه حضوراًابدى ، الماضى فيه يوجد كذكرى في الحاضر والمستقبل يولد كتطلع وتشوّف في الحاضر ، اللحظة الحاضرة هي كل شيء ، ونحن ننتقل من لحظة حاضرة إلى لحظة حاضرة ، ولانتتقل من ماض إلى حالمر إلى مستقبل، نحن نعيش في حضور مستمر، نعيش شاخصين باستمرار إلى سيَّال من الحوادث ينهال أمام حواسَّنا لانعرف في هذا الزمن الداخلي سوى « الآن » ، ننتقل من « آن » إلى «آن» ، ولايبدو انقطاع النوم في هذه الآنات إلا كانقطاع وهمى ، مايلبث أن تصله اليقظة .

هذا الزمن الذاتى النفسى ليس هو الزمن الذى يقصده أينشتين فى نظريته النسبية . . إنه زمن برجسون ، وسارتر ، وهيدجر وكيركجارد وسائر الفلاسفة الوجوديين . (وهم يسمونه الزمن الوجودى . .) ولكنه ليس زمن أينشتين أما زمن أينشتين فهو الزمن الخارجى الموضوعى . . الزمن الذى

نشترك فيه كأحداث ضمن الأحداث اللانهائية التي تجرى في

الكون . . الزمن الذى نتحرك بداخله . . وتتحرك الشمس بداخله . . وتتحرك كافة النجوم والكواكب . وهو زمن له معادل موضوعى فى نور النهار . . وانحراف الظل . . وظلمة الليل . . وحركات النجوم . . وهو الزلن الذى نتفاهم من خلاله ونأخذ المواعيد ونرتبط بالعقود ونتعهد بالالتزامات .

ماذا يقول أينشتين في هذا الزمان . ؟

إنه يتناوله فى نظريته النسبية بنفس الطريقة التى يتناول/بها المكان .

المكان المطلق فى النظرية النسبية لاوجود له . .

إنه لاأكثر من تجريد ذهنى خادع . .

المكان الحقيق هو مقدار متغير يدلّ على وضع جسم بالنسبة لآخر . . ولأن الأجسام كلها متحركة . . فالمكان يصبح مرتبطا بالزمان بالضرورة . . وفى تحديد وضع أى جسم يلزم أن نقول إنه موجود فى المكان كذا فى الوقت كذا . . لأنه فى حركة دائمة . وبهذا ينقلنا أينشتين فى نظريته إلى الزمان ليشرح هذه الرابطة الوثيقة بين الزمان والمكان . . فيقول إنه حتى الزمان بالتعبير الدارج عبارة عن تعبير عن انتقالات رمزية فى المكان .

الزمن المعروف بالساعة واليوم والشهر والسنة ماهو إلا مصطلحات ترم(إلى دوران الأرض حول نفسها وحول الشمس أو بشكل آجر « مصطلحات لأوضاع مختلفة فى المكان » . الساحة هي دورة الأرض ١٥ درجة حول نفسها . . واليوم هو دورة كماملة . . والسنة هي التفافها الكامل حول الشمس . . لجى الساعة التي نحملها في معصمنا عبارة عن انتقالات في المكالي (انتقالات عقرب على ميناء دائري من رقم إلى رقم) . الزمان والمكان متصلان في حقيقة واحدة . وينتقل بعد هذا إلى النقطة الثانية فيقول : إن كل الساعات التي نستخدمها على الأرض مضبوطة على النظام الشمسي . . لكن النظام الشمسي ليس هو النظام الوحيد في الكون . . فلا يمكن أن نفرض تقويمها الزمني على الكون ونعتبر الكميات التي نقيس بها كميات مطلقة منزلة .

فالإنسان الذى يسكن عطارد مثلا سوف يجد للزمن دلالات مختلفة ؛ إذ أن عطارد يدور حول نفسه فى ٨٨ يوما . . وهو فى هذه المدة نفسها يكون قد دار أيضا حول الشمس . . ومعنى هذا أن طول اليوم العطاردى يساوى طول السنة العطاردية . . وهو تقويم يختلف تماما عن تقويمنا . .

وبذلك يكون الزمن مقدارا لامعنى له إذا لم ينسب إلى النظام الذى اشتق منه . .

ولايمكن أن نفرض كلمة مثل « الآن » على الكون كله . . فهى أولا كلمة ذاتية نفسية . . وحتى إذا اقتصرنا على معناها الموضوعى وهو تواقت حدثين . . وحدوثهما معًا فى ذات اللحظة . . فإن هذا التواقت لايمكن أن يحدث بين أنظمة مختلفة لااتصال بينها . . ويشرح أينشتين هذه النقطة وهى من أعمق تطبيقات النسبية وأكثرها غموضًا فيقول :

إن متكلما من نيويورك يمكن أن يخاطب فى التليفون متكلما آخر فى لندن ويكون الأول يتحدث فى ساعة الغروب بينما الآخر فى منتصف الليل . . ومع ذلك يمكن لنا أن نجزم بتواقت الحدثين وحموثهما معا فى ذات اللحظة : . والسبب أن الحدثين يحدثان معا على أرض واحدة خاضعة لتقويم واحد هو التقويم الشمسى . . ومن المكن استنباط فروق التوقيت ورد هذه الآنية (الحدوث فى آن واحد) إلى مرجعها . . وهو النظام الواحد . .

أما القول بأنه من الممكن أن يحدث على الأرض . . وعلى كوكبه الجبار مثلا . . أو الشعرى اليمانية . . أحداث متواقتة فى آن واحد . . فهو أمر مستحيل . . لأنها أنظمة مختلفة لااتصال بينها . . والاتصال الوحيد وهو الضوء يأخذ آلاف السنين لينتقل من واحد

من هذه الأنظمة إلى الآخر . . ونحن حينما نرى أحد هذه النجوم ويخيل إلينا أننا نراه ، « الآن » نحن فى الحقيقة نراه عن طريق الضوء الذى ارتحل عنه منذ ألوف السنين ليصلنا . . نحن فى الواقع نرى ماضيه ويخيل إلينا أننا حاضره . . وقد يكون فى الحاضر قد انفجر واختفى أو ارتحل بعيدًا خارج نطاق رؤيتنا . . ومانراه فى الواقع إشارة إلى ماض لم يعد له وجود بالمرة . .

لابد أوّلا لكى نجزم «بالآنية» من أن نعرف العلاقات بين الحوادث والمجاميع الكونية . . ونعرف نسبية كل مقدار موجود فى إحدى المجاميع إلى المقادير الموجودة فى المجاميع الأخرى . . ولابد من وجود وسيلة اتصال حاسمة تنقلنا عبر الأبعاد الفلكية الشاسعة . .

ولكن للأسف أسرع وسيلة مواصلات كونية إلى الآن هى الضوء وسرعته ١٨٦٢٨٤ ميلا فى الثانية . . وهذه السرعة تمثل حدود معلوماتنا والسقف الذى تنتهى عنده المعادلات والرياضيات النسبة المكنة .

ويعود أينشتين فيشرح هذا الكلام بتجربة خيالية . إنه يتصور شخصًا جالسا على رصيف محطة فى منتصف مسافة بين النقطتين ا ، ب على شريط سكة حديد يجرى عليه قطار . . ويتخيل أن ضربتين من البرق حدثتا . . فى نفس الوقت وأنهما

سقطتا على القضيب عند (١) وعند (ب). وأن الشخص الجالس على الرصيف يراقب العملية مزودا بمرايا جانبية عاكسة . . سوف يرى ضربتى البرق فى وقت واحد فعلا . .

فإذا حدث وجاء قطار سريع متجها من (ب) إلى (١) وكان على القطار شخص آخر مزودا بمرايا عاكسة ليلاحظ مايجرى فهل يلاحظ أن ضربتى البرق حدثتا فى وقت واحد فى اللحظة التى يصبح فيها محاذيا للملاحظ على الرصيف . . ؟

وليقرب أينشتين المثل إلى الذهن يفترض أن القطار يسير بسرعة الضوء فعلا ١٨٦٢٨٤ ميلا فى الثانية . . ومعنى هذا أن ضربة البرق (ب) التى تركها خلفه لن تلحق به لأنه يسير بنفس سرعة موجة الضوء وهو لهذا لن يرى إلّا ضربة البرق (١) .

فلو كانت سرعة القطار أقل من سرعة الضوء . . فإن ضربة البرق (ب) سوف تلحق بعده متأخرة بينما سيشاهد ضربة البرق (١) قبلها . . وبذلك لن يرى الحدثين متواقتين . . فى آن واحد . . بينما يراهما الملاحظ على الرصيف متواقتين فى آن واحد . . وبهذا التناقض يشرح لنا أعمق مافى نظريته . . مايسميه « نسبية الوقت الواحد » . . وكيف أن الإنسان لايستطيع أن يطلق كلمة الآن على الكون . . وإنما يمكن أن يطلقها على نظامه الزمنى . . لأن كل مجموعة من الأجسام لها زمنها الخاص ومرجعها الخاص . . فإذا

حدث وكانت هناك مجموعتان متحركتان . . كما فى تجربة الملاحظ المتحرك على القطار . . والملاحظ الواقف على الرصيف . . فإننا نقع فى التناقض إذا حاولنا المساواة بين الاثنين .

والنتيجة الهامة التى نخرج بها أينشتين من هذه التجربة . . أن الزمان مقدار متغير فى الكون . . وأنه لايوجد زمن واحد للكون كله . . ممتد من مبدأ الوجود والخليقة إلى الآن . . وإنما يوجد عديد من الأزمان . . كلها مقادير متغيرة لايمكن نسبتها إلى بعضها إلا بالرجوع إلى أنظمتها واكتشاف علاقة حوادثها بعضها بالبعض وتحقيق الاتصال بينها . وهذا مستحيل . لسبب بسيط . . أن أسرع المواصلات الكونية وهى الضوء . . لاتستطيع أن تحقق تواقتا بين أطرافه . .

والنتيجة الثانية التى يخرج بها . . أنه بما أن سرعة الضوء هى الثابت الكونى الوحيد فينبغى تعديل الكميات التى نعبّر بها عن الزمان والمكان فى كل معادلاتنا لتتفق مع هذه الحقيقة الأساسية . . ومن الآن فصاعدًا يصبح الزمان مقدارًا متغيرًا . . والمكان مقدارًا متغيرًا .

وهذا يلقى بنا إلى نتائج مدهشة .

نتائج مدهشة

وصلنا من الحلقات السابقة إلى أن الزمن مقدار متغير يتوقف على المجموعة المتحركة التى يشتق منها . . وأن كل زمن له مرجع هو حركة الجسم وحركة المجموعة التى يستنبط منها أساس تقويمه الزمنى . .

فإذا حدث وتغيرت حركة الجسم فإنه ينبغى أن يتغير زمنه . . وبما أن الحد الأقصى لسرعة الحركة هو سرعة الضوء ١٨٦٢٨٤ ميل ثانية هذا الرقم يمثل حدود معرفتنا . . والسقف الذى تقف عنده معادلاتنا وحساباتنا الرياضية . .

ومايقال عن الزمان يقال عن المكان . . ويضرب أينشتين مثلاً بسيطا لهذا الكلام فيقول : إننا إذا تصورنا ساعة ملصقة بجسم متحرك . فإن هذه الساعة

لابد أن تسير بسرعة أخرى مختلفة عن سرعة ساعة ملصقة بجسم ساكن كالجدار مثلا . .

وبالمثل فإن مسطرة تتحرك فى الفضاء لابد أن يتغير طولها تبعا لحركتها . .

وعلى وجه الدقة . . فإن الساعة الملصقة بجسم متحرك . . تتأخر في الوقت كلما زادت سرعة الجسم حتى تبلغ سرعة الجسم سرعة الضوء فتتوقف الساعة تماما ، والشخص الذى يصاحب الساعة فى حركتها لايدرك هذه التغيرات . . وإنما يدركها الشخص الذى يلاحظها من مكان ساكن . .

وبالمثل تنكمش المسطرة فى اتجاه حركتها كلما زادت هذه الحركة حتى يتحول طول المسطرة إلى صفر حينما تبلغ سرعة الضوء . .

والتفسير بسيط . . إن الساعة التي تسير بسرعة الضوء . . لن يصل إلينا الشعاع القادم منها . . فهي بالنسبة لنا ستبدو متوقفة عند أوضاع العقارب التي شاهدناها بها أو مرة . . فإذا كانت تسير بسرعة عالية لكن أقل من سرعة الضوء . . فإن رؤيتنا للتغيرات على وجهها ستبدو دائما متخلّفة . . وسنشعر أنها تؤخّر .

وبالمثل مسطرة تتحرك بسرعة الضوء . . فإننا لن نرى منها إلا نقطة . . إلا طول مقداره صفر . . فإذاكانت حركتها سريعة ولكن أقل من سرعة الضوء فإنها ستبدو أقل طولاً مما هى عليه .

أما بالنسبة للمسافر بهذه السرعة العالية فإنه لن يلاحظ أى تغير . . إن دقات قلبه سوف تبطئ ولكن ساعة يده سرف تؤخر . . وهو لهذا لن يلحظ أى تغير فى سرعة قلبه . . ولكن الذى يلاحظه من على الأرض بتلسكوب مثلا . . سوف يكتشف أنه يكبر ببط . .

ولو قدر لواحد أن يسافر بصاروخ سرعته ١٦٧٠٠٠ ميل ثانية مثلا . . ليقضى فى سفريته عشر سنوات . . فإنه حينما يعود إلى الأرض سوف يكتشف أنه كبر فى العمر خمس سنوات فقط . . إنه يكبر ببط ع لأن الزمن فى السرعات العالية يبطى من إيقاعه لتصبح العشر السنوات خمس سنوات .

أما إذا انطلق بسرعة أكبر من سرعة الضوء ولمسافة أكبر كأن يطير فى صاروخ إلى سديم أندروميدا وبسرعة خرافية بحيث يطوى هذه المسافة التى يقطعها الضوء فى مليون سنة يطويها هو ذهابا وإيابا إلى الأرض فى ٥٥ سنة . . فماذا يجد . . إنه يجد أن الأرض قد مضى عليها ثلاثة ملايين سنة فى غيابه . . لقد أبطأ به زمنه وكاد يتوقف بينما ملايين السنين تطوى على الأرض . وهو مجرد افتراض بالطبع لأنه لاأحد يستطيع أن يتحرك بسرعة الضوء أو يتجاوزها . . ومستحيل على جسم مادى أن نيخترق حاجز الضوء .

لكن إذا تصورّنا فرضًا أن هذه المعجزة حدثت فإن هناك نكتة أخرى سوف تكون بانتظار هذا المسافر العجيب . . فإنه إذا اخترق حاجز الضوء سوف نخرق حاجز الزمن في نفس اللحظة ، فيبرح الأرض اليوم ليعود إليها بالأمس بدلا من الغد . . سوف يتحول إلى مسافر في الزمن في الماضي . . فيسافر اليوم ويعود البارحة . . فيعثر على نفسه حينما كان في ذلك اليوم الماضي . . وتتواجد منه نسختان لأول مرة في آن واحد . . ويلتقي هو اليوم بنفسه وتوأمه البارحة . . وهي ألغاز وأحاجي تبدو كالهذيان وتخرق كل ماهو مألوف . . ولكن علماء الرياضيات لاينظرون إلى المألوف ولايستمدون علومهم من المألوف . . وإنما هم يعيشون في المعادلات والحسابات والفروض . . والفيصل والحكم عندهم هي الأرقام .

ونحن لانتصوّر كيف يمكن أن يبطئ إيقاع الزمن نتيجة الحركة ،

ولانتصور كيف تتقلّص أبعاد المكان بالحركة . والسبب هو التعوّد . . والأحاسيس المألوفة . فلم يحدث أن رأينا ساعة تؤخر لمجرد أنها مثبتة فى قطار متحرك مثلا . .

ولم يحدث أن رأينا مسطرة تنكمش فى اتجاه حركتها . . والسبب أن السرع الأرضية كلها بما فيها سرعة الطائرات والصواريخ هى سرع صغيرة جدا بالنسبة لسرعة الضوء . . وبالتالى تكون التغيرات فى الزمان وفى المقاييس المِتريّة طفيفة جدًّا جدًّا جدًّا . . ولايمكن إدراكها بالحواس .

فإذا أضفنا لهذا أن علم الطبيعة الكلاسيكية قد علمنا منذ الصغر أن الأجسام المتحركة تحافظ على أطوالها سواء فى الحركة أو السكون . . وأن الساعة تحافظ على انضباطها سواء أكانت متحركة أو ساكنة . . فالنتيجة أننا نعيش سجناء . . أسرى آراء خاطئة . . وأحاسيس خاطئة . . تعمقت جذورها فينا يوما بعد يوم نتيجة الألفة . .

والعالِمُ العظيم والمكتشف العبقرى هو وحده الذى يستطيع أن يمزق أستار هذه الألفة . . ويتخلّص من أسار هذه العادة . . ويأخذ بيدنا إلى حقيقة جديدة . . وهذا هو مافعله أينشتين والنتيجة هى الدهشة . . وعدم التصديق . .

لأن الحقيقة تصدم حواسنا . .

ومن حسن الحظ أن العِلْم لم يتوقف عند مجرد الأمثلة الخيالية . . والافتراضات . . والمعادلات الجبرية . . وإنما استطاع أن يقدّم لنا دليلاً ملموسًا على صدق النسبية . .

استطاع إيفز سنة ١٩٣٦ أن يثبت أن ذرة الأيدروجين المشع المنطلقة بسرعة عالية . . تطلق أشعة تردّدها أقل من الذرات الساكنة ، أو بشكل آخر أن الزمن فيها أبطأ . . فتردّد الموجة هو ذبذبتها فى الزمن ، وحينما نقول إن تردد الموجة يقلّ مع الحركة فإنه يكون مثل قولنا إن عقرب الساعة يتحرك على مينائها بطريقة أبطأ . . وأن زمنها يتأخر . .

وهكذا أمكن لأينشتين أن يثبت قصور رياضيات نيوتن وعدم كفايتها فى حساب السرع والأبعاد الكبيرة فى الكون الشاسع . .

وأثبت ماكس بلانك بالمثل قصور رياضيات الضوء الكلاسيكية وعدم كفايتها فى حساب العلاقات الدقيقة بين الأبعاد الصغيرة جدًا فى الذرة والفوتون . .

وكانت النتيجة هى النظرية النسبية كمحاولة لشرح ظواهر الكون الكبير ومعرفة علاقاته . .

والنظرية الكمّية كمحاولة لشرح ظواهر عالَم الذرة الصغيرة ومعرفة علاقاته . .

ولكن بين النظريتين فجوة . .

ولابد من محاولة ثالثة لربط النظريتين بقانون واحد ومعادلات واحدة حتى يتم ربط الكون كلّه فى إطار من قانون واحد . . فأينشتين عنده نظرية لايريد أن يتزحزح عنها . . أن الكون بسيط

برغم تعدده . . وأن ظواهره الكثيرة برغم اختلافها وتناقضها . . فإن فيها وحدة . .

وهو يؤمن بهذه الوحدة إيمانًا دينيًّا . . وهى تقوم فى ذهنه سابقة على أى برهان . .

وأكثر من هذا هو مؤمن بالمعنى التقليدى للمؤمنين – فهو يعتقد فى إله . . ويعتقد أن الكون متّسق ومنسجم . . وأنه آية من آيات النظام . . وأنه يمكن تعقّله .

وهو يرفض فكرة أن الكون فوضى . . ويرفض فكرة الاتفاق والصدفة والعشوائية . . .

ويشكر الله كلّ يوم على القدر القليل الذى يسرّه له من الحقيقة ، ويبدى إعجابه بالروح العليا التى تكشف له عن سرّها فى التفاصيل القليلة الممكنة لإدراكه . .

وهو فى سنة ١٩٢٥ يتقدم بنظرية « المجال الموحد » فى محاولة ليجمع شتات القوانين الطبيعية ويضمها تحت لواء قانون واحد ثم يعود فيستبعدها . . ويرفضها . . إن الأمر أصعب بكثير ممّا تصور . وهو يحتاج إلى مزيد من العرق . . والكفاح .

وإذا عدنا للأساس الذى يبنى عليه أينشتين وحدة القوانين

الطبيعية فإننا نرى أن أساسها عنده هو الضوء . .

فالضوء بسرعته الثابتة الواحدة خلال رحلته الأبدية فى أطراف الكون يضم أشتات الكون تحت لواء قوانين واحدة . . وفى نفس الوقت يزود الرياضة بأحد الثوابت النادرة التى يمكن أن تعتمد عليها . . إن « ١٨٦٢٨٤ ميل ثانية » هو ثابت مطلق لايتغيّر مقداره فى أى طرف من أرجاء الكون .

وبما أنه يريط جميع المجموعات المتحرّكة وينتقل بينها . . دون أن يتغير . . فلابد أن هناك قاسمًا مشتركا أعظم لكل القوانين المختلفة التي تحكم هذه المجموعات . .

هناك أمل إذن . . والطريق مفتوح . .

وإذا عدنا إلى مثّل الساعة المتحركة . . والمسطرة المتحركة . . فإننا سوف نذكر أننا قلنا إن الساعة المنطلقة بحركة عالية تظلّ تؤخّر وتؤخر حتى تبلغ سرعة الضوء فيتوقف الزمن فيها تمامًا . . والمسطرة الطائرة بالمثل تظل تنكمش وتنكمش حتى تبلغ سرعة الضوء فيصبح طولها صفرًا . .

وهذه مستحيلات فرضيّة بالطبع . . لأن سرعة الضوء حدّ أقصى لايمكن لأى جسم أن يبلغها ، فهى قاصرة على الضوء ذاته . .

ولكن أينشتين يمعن فى الافتراض . . فيبحث فى صفة ثالثة غير زمان الجسم ومكانه . . هى كتلته . . ويتساءل . . ماذا يحدث لكتلة جسم منطلق بسرعة عالية تقرب من سرعة الضوء . .

الكتلة

والنتيجة هى مفاجأة أكثر إدهاشًا من كلّ المفاجآت السابقة . . الكتلة مرادفة للوزن فى لغة الكلام العادى . . والذين يذكرون بعض المعلومات التى أخذوها فى كتب الطبيعة يعلمون أن للكتلة تعريفا مختلفا . . فهى « خاصية مقاومة الحركة » . . هكذا يسمّيها الفقهاء . .

وقد تعلمنا من هؤلاء الفقهاء أن الكتلة كمّ ثابت . . وأنها لاتتأثر بحركة الجسم أو بسكونه . . فهى صفة جوهرية فيه . . ولكن أينشتين الذى قلب وجه الفقه الطبيعى أثبت أن الكتلة نسبية مثل الزمان والمكان . . وأنها مقدار متغير . . وأنها تتغير بحركة الجسم . .

كلما ازدادت سرعة الجسم كلما ازدادت كتلته . . ولاتبدو هذه الفروق فى السرع الصغيرة المألوفة حولنا ولهذا تفوتنا فلا نلاحظها . . ولكنها فى السرع العالية التى تقترب من سرعة الضوء تصبح فروقًا هائلة . . حتى إذا بلغت سرعة الجسم مثل سرعة الضوء فإن كتلته تصبح لانهائية . . وبالتالى تصبح مقاومته للحركة لانهائية وبالتالى يتوقف . . وهذه فرضية مستحيلة طبعًا لأنه لايوجد جسم يمكنه أن يتحرك بسرعة الضوء . . واستطاع أبنتشين أن يقدم المعادلة الدقيقة التى تبين العلاقة بين

كتلة الجسم وسرعته . .

$$U_{i} = \sqrt{1 - \frac{2^{n}}{\sigma_{i}}}$$

حيث إن ك_م هى كتلة الجسم وهو متحرك ، ك كتلته وهو ساكن ، ع سرعته ، ص سرعة الضوء ... والذين يذكرون أوليات علم الجبر يعلمون أن ع حينما تكون مقاديرها صغيرة لا تؤثر بكثير فى المعادلة . . ولكن حينما تقترب ع من سرعة الضوء فإن النتيجة تتضخم بشكل هائل وتصبح قيمة الجذر التربيعى أقرب إلى الصفر . . وتصبح الكتلة الجديدة هى ك مقسومة على صفر أى لا نهاية . .

ولم تلبث المعامل أن قدمت لنا التجربة الملموسة التي تثبت. صدق هذه المعادلة . . وبهذا خرجت بها من حيز الافتراضات الجبرية إلى حيز الحقائق العلمية المعترف بها . .

أثبتت التجارب أن القذائف المشعة التي تطلقها مادة الراديوم والبورانيوم (وهي دقائق مادية متناهية في الصغر تنطلق بسرعة قريبة من سرعة الضوء ...) تزداد كتلتها بما يتفق مع حسابات أبنشتين .. وخطا أينتشتين خطوةً أخرى في تفكيره النظرى ... قائلاً : إنه مادام الجسم يكتسب مزيدا من الكتلة حينما يكتسب مزيداً من الحركة ... وبما أن الحركة شكل من أشكال الطاقة ... فإن معنى هذا أن الجسم حينما يكتسب طاقة يكتسب نفس الوقت كتلة ... أى أن الطاقة يمكن أن تتحوّل إلى كتلة والكتلة عيكن أن تتحول إلى

وما لبث أن قدّم المعادلة التاريخية لهذه العلاقة بين الطاقة والكتلة . . وهى المعادلة التى صُنعت القنبلة الذرية على أساسها . ط = ك × ص⁷ . أو أن الطاقة المتحصلة من كتلة معينة تساوى حاصل ضرب هذه الكتلة بالجرام فى مربع سرعة الضؤ بالسنتيمتر ثانية . . ويلاحظ هنا أن الطاقة الناتجة من تفجير جرام واحد كمية هائلة

جدا . . وأنها يمكن أن تحرق مدينة . . أو تزوّد مديرية كاملة بالوقود لمدة سنة . .

فإذا أردنا أن نحسب كمية الكتلة المتحصلة من تركيز كمية الطاقة ، فان المعادلة تكون أن الكتلة تساوى الطاقة مقسومة على سرعة الضوء بالسنتيمتر ثانية . . أى مقدار ضئيل جداً . .

والمعادلة تفسّر لنا السر فى أزليّة هذا الكون وقِدمه . . السرّ فى أن هذا العدد الهائل من النجوم مضت عليه آماد طويلة من بلايين السنين وهو يشع نوراً وطاقة وحرارة . . ولم تبد عليه مخايل الفناء بعد . .

والسرّ هو أن النجوم تحترق بطريقة أخرى غير احتراق السجاير.. والكبريت .. فالكبريت يشتعل بطريقة كيائية .. والنار التى تخرج منه هى حرارة اتحاد عناصر بعضها ببعض . . هى حرارة اتحاد الكبريت بالأوكسجين لينتج ثانى أكسيد الكبريت واتحاد الكربون بالأكسجين لينتج ثانى أكسيد الكربون . .

الكبريت لا يفنى وإنما يتحول إلى مركبات أخرى . . هى الدخان .

أما احتراق الشمس والنجوم فإنه احتراق فناء . . ذرات الشمس والنجوم تتحطّم وتتدفّق شعاعًا فى كل أقطار الكون ، وهذا النوع من الاحتراق النووى بطئ جدّا . . لأن قليلا

جداجدا من المادة يملأ الفضاء بالكثير جدا جدا من الطاقة . . فالنجوم تخسر قليلا جدا من مادتها كل يوم . وهذا سرّ عمرها الطويل الأزلى ، ولوكانت الشمس تحترق بالطريقة التى تحترق بها السجائر وعيدان الكبريت لانطفأت فى لحظة ولتحولت الأرض إلى صقيع وانقرض ماعليها من صنوف الحياة . .

ولقدكان انفجار قنبلة هيروشيا . . واختراع القنبلة الهيدروجينية بعد ذلك . . ثم قنبلة النيوترون . . بداية فتح رهيب فى عالم الطاقة .

لقد سلم أينشتين مفاتيح جهنم للعلماء . . وللساسة المخبولين . . وللمجانين من هواة الحروب . . بهذه المعادلة البسيطة . . وأصبح ممكنًا بالحساب والأرقام معرفة كمية المادة اللازمة لنسف دولة وإفناء شعب . . وهى فى العادة قليل من جرامات اليورانيوم والماء الثقيل والكوبالت . . أقل مما يملأ قبضة اليد . . وانفتح فى نفس الوقت باب لبحوث الفضاء . . وأصبح السفر فى صواريخ هائلة تنطلق بسرعة خارقة وتخرج من جاذبية الأرض . . ممكنا . . نتيجة اختراع صنوف جديدة من الوقود الذرى . .

لكن أهم من هذه التطبيقات العملية . . كانت هناك نتيجة نظرية خطيرة ترتبت على هذه الخطوة . .

أن الحاجز بين المادة والطاقة قد سقط نهائيا .. وأصبحت المادة هي الطاقة .. والطاقة هي المادة ..

لافرق بين الصوت والضوء والحرارة والحركة والمغنطيسية والكهرباء . . وبين المادة الخاملة التى لايخرج منها صوت ولاتندّ عنها حركة .

> فالمادة هى كل هذه الظواهر مختزنة مركّزة . المادة هى الحركة مضغوطة محبوسة . هى قمقم سلمان فيه عفريت .

وأينشتين هو الّذى أطلق تعزيمة الرموز والطلاسم الجبرية فانفتح القمقم وخرج العفريت .

المادة ليست مادة . .

إنها حركة . .

ماالفرق بين أن نقول ذلك . . وبين أن نقول إنها روح . . الروح تعبير صوفى نقصد به الفاعلية الخالصة التى بلا جسد . والمادة اتضح أنها فاعلية خالصة (حركة) وأن جسمها الملموس وهم ، من أوهام الحواس . الألفاظ تختلط ببعضها . . وكل شىء جائز . ومنذ اللحظة التى حطّم فيها أينشتين السدّ الوهمىّ بين المادة والطاقة ، انهار كل يقين حسى ملموس . . وتحولت الدنيا إلى خواء

مشحون بطاقة غير مرئية . . مثل الجن والعفاريت . . مرة يسميها العلم . . موجات مغنطيسية كهربائية . . ومرة يسميها أشعة كونية . . ومرة يسميها أشعة إكس . . ومرة يسميها جزيئات بيتا . . ومرة يسميها أشعة جاما . . وأغلبها أشياء تقتل فى الظلام دون أن تدركها الحواس . . وهذه الأشياء هى نفسها المادة الساذجة الخاملة التى نتداولها بين أيدينا كل يوم . .

وسط هذا التشويش والغموض وجَدت بعض المعضلات العلمية تفسيرها . . المشكلة التي أثارها ماكس بلانك . . هل طبيعة الضوء ذرية . . أو موْجية . . ؟ ! !

مثل هذا الازدواج أصبح طبيعيًّا . . فالضوء مادة وفى نفس الوقت طاقة . . ولابد أن يحمل أثر هذه الطبيعة المزدوجة . . وهى ازدواج وليس تناقضا . . لأن الذرّة ليست شكلاً ثابتًا وحيدا للمادة . . وإنما هى فى ذات الوقت يمكن أن تتبعثر أمواجًا . .

w/ac

ماذا يقول لنا أينشتين بعد هذا . ؟ لقد أثبت نسبية الزمان ونسبية المكان ونسبية الكتلة . . ثم كشف عن الكتلة فإذا بها خواء اسمه « الحركة » . .

٦٨

الحركة المطلقة

أنكر أينشتين فى نظريته إمكان الحركة المطلقة . . فمن المستحيل أن نعرف أن جسما ما فى حالة حركة أو فى حالة سكون إلّا بالرجوع إلى جسم آخر . . وتاريخنا مع الأرض يؤكّد كلام أينشتين . . لقد ظللنا نعتقد قرونا طويلة بأن الأرض ساكنة حتى اكتشفنا حركتها عن طريق رصد النجوم والكواكب حولها . . ولو أن أرضناكانت تدور وحدها فى فضاء الكون لما أمكن على الإطلاق معرفة حركتها من سكونها . . لانعدام أىّ مرجع نقيس به . . ولكان من المؤكد أننا سوف نظل جاهلين بحالنا . . وكان هناك استثناء واحد . .

أن تبطئ الأرض فى حركتها فجأة . . أو تسرع فجأة . . أو تضطرب حركتها . . فندرك عن طريق تثاقل أجسامنا وقصورنا الذاتى أننا على جسم متحرك . . شأننا شأن راكب الطائرة الذى يستطيع أن يكتشف حركتها دون حاجة إلى أن يطل من النافذة أو يرجع إلى مرجع بمجرد أن تغير الطائرة من سرعتها أو اتجاهها أو ارتفاعها . . ومثل راكب القطار الذى يجلس فى مقصورة مغلقة جاهلا بحركة قطاره حتى يبدأ القطار فى التباطؤ أو ينحرف عن مسيره . . فيدرك أن قطاره يتحرك . .

وكان معنى هذا الاستثناء أن الحركة يمكن أن تكون مطلقة إذا كانت غير منتظمة . . فهى فى هذه الحالة يمكن إدراكها بالرجوع إلى ذاتها . . وبدون حاجة إلى مرجع خارجى . .

ولهذا وضع أينشتين نظريته الأولى « النسبية الخاصّة » وقصرها على الأجسام التى تتحرك بحركة منتظمة . . وقال فيها : « إن قوانين الكون واحدة لكل الأجسام التى تتحرك بحركة منتظمة » .

ولكن هذا الشذوذ فى القاعدة . . ظل يؤرق باله . . فهو لايعتقد فى كون معقّد وإنما يؤمن بكون بسيط . . ويرى أن البساطة أعمق من التعقيد . . وأن تعدّد القوانين وتناقضها فى كون واحد يدل على عقل رياضى سطحى عاجز عن إدراك الحقيقة . وبعد سنوات من التفكير والحساب وإعادة النظر قدم نظريته

الجريئة فى «النسبية العامة» التى أعلن فيها أن «قوانين الكون واحدة لكل الأجسام بصرف النظر عن حالات حركتها»... وبذلك عاد فأكد رفضه لكل ماهو مطلق... حتى هذا الاستثناء الواحد... الحركة غير المنتظمة... هى الأخرى أصبحت نسبية لايمكن الجزم بها بدون مرجع خارجى...

ولتقريب هذا الإشكال الجديد إلى الذهن تخيل أينشتين أرجوحة مربوطة بحبال إلى عمود رأسى . . وأن هذه الأرجوحة تدور حول العمود كما تدور أراجيح الأطفال فى المولد . . مع فارق واحد : أنها مغلقة تماما وأن الجالس بداخلها لايرى مايدور خارجها . . وأنها موجودة فى الفضاء بعيدا عن أى جاذبية . . ماذا سوف يحدث لعدد من العلماء جالسين فى تلك الأرجوحة ؟

إنهم سوف يلاحظون أن أجسامهم تتثاقل دائما نحو أرضية الأرجوحة ، وأنهم إذا ألقوا بأى شيء فإنه يسقط دائما نحو الأرضية وإذا قفزوا من أماكنهم فإنهم سوف يقعون دائمًا نحو الأرضية . . وإذا انطلقت رصاصة لتخترق جدار الأرجوحة فإنها سوف تميل نحو أرضيتها على شكل قطع مكافئ . . وسوف يكون تعليلهم لهذه الظاهرة أن هناك قوى جاذبية في هذه الأرضية . .

وهم لن يفطنوا إلى أن الأرضية هى الجدار الخارجى لأرجوحتهم نظرا لأن الحواس تقرن دائما أى تثاقل بأنه اتجاه إلى تحت (وهو شبيه لما يحدث لنا على الأرض . . فنحن أثناء دوران الأرض تكون رءوسنا إلى أسفل وأقدامنا إلى أعلى ومع ذلك يخيل إلينا العكس . . أن أقدامنا إلى أسفل دائما نتيجة الإحساس بالتثاقل الناتج عن الجاذبية) .

وهكذا سوف تكون جميع حسابات هؤلاء العلماء مؤكدة بأنهم خاضعون لقوى الجاذبية ..

ولكن من يلاحظ هده الأرجوحة من الخارج سوف يخطّئ كل حساباتهم . . وسوف يرى أنهم خاضعون للقصور الذاتى المعروف باسم القوة الطاردة المركزية . . وهى القوة التى تطرد الأجسام المتحركة فى دائرة إلى خارج الدائرة . .

ومعنى هذا أن هناك إمكانية للخلط دائما بين الحركة الناتجة من الجاذبية والحركة الناتجة من القصور الذاتى . . وأنه لايمكن التفرقة بين اثنين بدون مرجع خارجى . .

فإذا عدنا إلى الإشكال الأول – وهو إشكال الحركة غير المنتظمة وتخيلنا الأرض التي تسير وحدها في الفضاء . .

وتخيلنا الاستثناء الذى ترتب عليه إدراكنا لهذه الحركة وهو أن تبطئ أو تسرع . . أو تضطرب فى حركتها . . فإن هذا الاستثناء

لايكون دلالة على أن حركتنا مطلقة . . إذ أن الخلط مازال قائما . . فمن المحتمل أن يكون ماحسبناه حركة أرضية (نتيجة القصور الذاتى) هو فى الواقع اضطراب فى مجال الجاذبية لنجم بعيد غير مرئى . . (مثل مايحدث فى حركة مياه البحر من مدّ وجزر نتيجة التقلبات فى مجال جاذبية القمر) .

إن التمييز بين الحركة الناتجة عن القصور الذاتى ، والحركة الناتجة عن الجاذبية ، مستحيل ، بدون مرجع خارجى . .

وبذلك لاتكون هناك وسيلة إلى إدراك الحركة المطلقة . . حتى من خلال الحركة غير المنتظمة .

وبذلك تصبح نظرية أينشتين نظرية عامة شاملة لكل قوانين الكون لانظرية خاصّة بالأجسام ذات الحركة المنتظمة . .

والبرهان الثانى يأخذه أينشتين من ظاهرة طبيعية معروفة هى سقوط الأجسام نحو الأرض بسرعة واحدة مهما اختلفت كتلاتها ، كرة من الحديد تسقط نحو الأرض بنفس السرعة التى تسقط بها كرة من الخشب مماثلة لها فى الحجم بنفس السرعة التى تسقط بها قنبلة مدفع . . وإذاكانت قطعة من الورق تسقط نحو الأرض ببطء فالسبب

أن مسطحها كبير ومقاومة الهواء لسقوطها كبير مما يؤدى إلى هذا

البطء فى سقوطها . . ولكن لوكورناها تمامًا فإنها سوف تسقط نحو الأرض بنفس السرعة التى تسقط بها كرة الحديد .

ولقد كانت هذه السرعة الواحدة التى تسقط بها جميع الأجسام مصدر مشكلة عويصة فى الطبيعة . . إذ أن هذه الظاهرة هى عكس الظاهرة المعروفة فى حركة الأجسام الأفقية . . وتفاوت سرعتها تبعا لكتلتها . . فالقوة التى تدفع كرة صغيرة عدة أميال إلى الأمام . . لاتكاد تحرك عربة سكة حديد إلّا عدّة سنتيمترات . . نتيجة أن عربة السكة الحديد تقاوم الحركة بقصورها الذاتى الأكبر بكثير من قصور كرة صغيرة ذات كتلة صغيرة . .

وقد حل نيوتن هذا الإشكال بقانونه الذى قال فيه إن قوة الجاذبية الواقعة على جسم تزداد كلما ازداد قصوره الذاتى . . والنتيجة أن الأرض تشدّ الكرة الحديد بقوة أكبر من الكرة الخشب . . ولذلك تسقط الكرتان بسرعة واحدة . . لأنه ولو أن الكرة الحديد قصورها أكبر ومقاومتها للحركة أكبر إلا أن القوة التى تشدها أكبر . .

وهذا القانون الذى أعلنه نيوتن باسم « تكافؤ الجاذبية والقصور الذاتى » . . هو دليل آخر على إمكانية الخلط بين القوتين . .

انتهت نظرية أينشتين الثانية المعروفة « بالنسبية العامة » إلى نغى

معرفة كل ماهو مطلق . . وإلى اعتبار الكون خاضعًا لقوانين واحدة برغم اختلاف الحركة فى داخله . . وإلى استحالة معرفة الحركة من السكون بدون مرجع خارج عن نطاق الحركة وعن نطاق هذا السكون . .

ولكن أينشتين فتح على نفسه بابًا خطيرًا من الشك . . فهذا الخلط بين الجاذبية . . والقصور الذاتى . . فتح بابا للتساؤل . . من أين نعلم إذن أن مانقيسه على الأرض هو ظواهر لقوة جاذبية . . لماذا لاتكون ظواهر قصوريّة . .

إن وجود الجاذبية يصبح أمرًا مشكوكا فيه من أساسه . . وعلى أينشتين أن يملأ هذه الفجوة الرهيبة التي فتحها . . عليه أن يواجه عملاقًا اسمه نيوتن . . ويردّ عليه . .

والإشكال الثانى هو هذا التفكك الذى اعترى الحقيقة على يد النسبية . . فانفرطت إلى كلمات خاوية . . المكان . . والزمان . . والكتلة . . حتى الكتلة انفرطت هى الأخرى فأصبحت حركة . . مجرد خواء . .

كيف يعود أينشتين فيبنى من هذا الخواء كونًا مأهولا معقولا ملموسا كالكون الذى نراه . .

وكيف يصبح لهذا الكون شكل . . وأعمدة الشكل . . وهي

الصلابة المادية . . قد انهارت . . وتبخّرت . . إلى طاقة . . وإشعاع غير منظور . إن أينشتين عمد إلى البساطة فانتهى إلى الغموض . . وهدف إلى الحقيقة فأخذ بيدها إلى هوّة من الشكّ .

البعد الرابع

إذاكنت فى البحر وأردت أن تحدّد وضعك فأنت فى حاجة إلى نسبة هذا الوضع إلى بعدين . . هما الطول والعرض . . فأنت عند التقاء خط طول كذا بعرض كذا . .

أما إذاكنت طائرًا فى الهواء وأردت أن تحدد موضعك فأنت فى حاجة إلى ثلاثة أبعاد . . الطول والعرض والارتفاع . . لتحدد النقطة التى أنت فيها بالضبط .

وهذه الأبعاد الثلاثة لاتصف لنا حركتك . . لأن وضعك يتغير من لحظة لأخرى على محور رابع غير منظور ولاملموس هو الزمن . . فإذا أردت أن تعرف حركتك فإن الأبعاد الثلاثة لاتكفى ، ولابد أن تضيف إليها بعدًا رابعا هو الزمن . . فأنت على خط طول كذا وخط

عرض كذا فى ارتفاع كذا فى الوقت كذا . . ولأن كل شىءفى الطبيعة فى حالة حركة . . فالأبعاد الثلاثة هى حدود غير واقعية للأحداث الطبيعية . . والحقيقة ليست ثلاثية فى أبعادها ولكنها رباعية . .

إنها المكان والزمان معًا فى « متصل واحد » .

(Space-time continuum)

ولكن المكان والزمان يظهران دائما منفصلين فى إحساسنا . . لأننا لانرى الزمان ولانمسكه كما نمسك بالأبعاد المكانية الأخرى . . ولانعرف له معادلا موضوعيا خاصا به كما للمكان . . ومع هذا فاتصال الزمان بالمكان حقيقة . . بدليل أننا إذا أردنا أن نتتبع الزمان فإننا نتتبعه فى المكان . . فنترجم النقلات الزمانية بنقلات مكانية . . فنقول « فلان بيكبر » ونقصد فى السن . . والحجم . . ونقول « وقت الغروب » . . ونقصد انحدار الشمس فى المكان بالنسبة للأرض . . ونقول . . اليوم . . والشهر . . والسنة . . وهى إشارات للأوضاع المكانية التى تحتلها الأرض حول الشمس .

ونحن حينما ننظر فى أعماق آلسماء بالتلسكوب لنشاهد نجوما بعيدة جدا بيننا وبينها ألوف السنين الضوئية ، نحن فى الحقيقة ننظر فى الزمان لافى المكان وحده . . نحن ننظر فى ماضى هذه النجوم . .

ومانراه هو صورتها حينما غادرها الضوء ليصل إلينا بعد هذه الألوف من السنين . .

ومع هذا فنحن لانستطيع أن نتخيل شكلا ذا أبعاد أربعة . . إن هذه التركيبة الخيالية تحدث لنا دوارًا . . فكيف يمكن أن يضاف الزمان إلى الأبعاد الثلاثة ليصنع شكلا ذا أبعاد أربعة . . وماذا تكون صفة هذا الشكل . .

وأينشتين يقول إننا سجناء حواسّنا المحدودة . . ولهذا نعجز عن رؤية هذه الحقيقة وتصورها .

ولكن كل مافى الكون من أحداث يثبت أن هذه التركيبة ليست تركيبة فرضية رياضية . . وإنما هى حقيقة . . فالزمان غير منفصل عن المكان وإنما هما نسيج واحد .

وهذا النسيج هو «المجال» الذى تدور فيه كل الحركات الكونية . . وعند كلمة « مجال » نتوقف قليلا . . فهى كلمة لها عند أينشتين معنى جديد عميق . .

كلمة « المجال » هي الكلمة التي يرد بها أينشتين على نظرية الجاذبية لنيوتن . .

نيوتن يقول إن الجاذبية قوّة كامنة فى الأجسام تجذب بعضها إلى بعض وتؤثر عن بعد .

ولكن أينشتين يرفض نظرية التأثير عن بعد . . وينكر أن الجاذبية قوة . . ويقول إن الأجسام لاتشدّ بعضها بعضا . . ولكنها تخلق حولها « مجالا » . .

كل جسم يحدث اضطرابا فى الصفات القياسية للفضاء حوله . . كما تحدث السمكة اضطرابا فى الماء حولها . . ويخلق حوله مجالا (نتيجة التعديلات التى تحدث فى الزمان والمكان حوله). . . وكما فى المغناطيس يمكن تخطيط هذا المجال عن طريق رش

برادة الحديد . . كذلك يمكننا عن طريق الحساب والمعادلات أن

نحسب شكل وتركيب مجمال جسم معين عن طريق كتلته . . وقد استطاع أينشتين أن يقدم بالفعل هذه المعادلات المعروفة بمعادلات التركيب . . وأرفق بها مجموعة أخرى من المعادلات سماها معادلات الحركة . . لحساب حركة أى جسم يقع فى ذلك المجال . . وتفسير مايحدث فى نظر أينشتين حينما يجذب المغنطيس برادة الحديد . . أن برادة الحديد تتراص فى صفوف فى الفضاء وفقا

للمجال . . لأنها لاتستطيع أن تسلك سبلا أخرى فى حركتها نتيجة التعديلات التى أحدثها وجود المغنطيس فى الخواص القياسية للفضاء حوله . .

> إن المغنطيس لايجذب البرادة . . والبرادة لاتنجذب إلى المغنطيس . .

ولكنها لاتجد طريقا تسلكه سوى هذه السكك الفضائية الجديدة التى اسمها المجال المغنطيسى . .

تماماكما تخلق السمكة نتيجة حركتها فى الماء تيارًا تسير فيه ذرات الغبار العالقة بالماء . . ويبدو على هذه الذرات أنها تسير منجذبة إلى السمكة . ولكنها فى الواقع تتحرك وفقا للدوامة المائية وللتيارات التى خلقتها السمكة بحركتها فى الماء . . إنها لاتتحرك بقوة السمكة . . بل هى تتحرك وفقا لمجال . .

وكان من المكن أن تمر هذه النظرية على أنها نوع من التخريف والهذيان ، لولا أن معادلات أينشتين قد استطاعت أن تتنبأ بظواهر طبيعية وفلكية . . كانت تعتبر إلى وقت قريب من الألغاز . فقد ظلت حركة عطارد حول الشمس لغزًا حتى فسّرتها هذه المعادلات . .

والظاهرة التي كانت تحير العلماء أن هذا الكوكب الصغير بنحرف عن مداره بمقدار معين كل عدد معين من السنين . . وأن المجال الذى يدور فيه ينتقل من مكانه بمضى الزمن . . وقد تنبأت معادلات أينشتين بمقدار الانحراف بالضبط . . وكان التفسير الذى قدمه أينشتين لهذه الظاهرة أن شدّة اقتراب عطارد من الشمس بالإضافة إلى سرعة دورانه وعظم جاذبية

الشمس . . هو الذي يؤدي إلى هذا الاضطراب في المجال

والانحراف المشاهد في مدار الكوكب . .

أما النبوءة الثانية فكانت أخطر من الأولى . . وأكثر إثارة للأوساط العلمية . . فقد كان معلوما أن الضوء ينتشر فى خطوط مستقيمة . . وهكذا تعلمنا فى كتب الضوء الأولية التى درسناها فى المدارس . .

ولكن أينشتين كان له رأى آخر. . فمادام الضوء طاقة . . والطاقة مادة . . فلابد أن يخضع الضوء لخواص المجال كما تخضع برادة الحديد فيسير فى خطوط منحنية حينا يقترب من جسم مثل جسم الشمس . . ذى مجال جاذبية قوى . . فلو رصدنا نجا يمر ضوؤه بجوار الشمس لوجدنا أن الشعاع القادم إلينا ينحرف إلى الداخل ناحية مجال الشمس ولرأينا الصورة بالتالى تنحرف إلى الخارج بزاوية معينة قدرها أينشتين ١,٧٥ درجة . .

وكان رصد مثل هذا النجم يقتضى الانتظار حتى يأتى وقت الكسوف . . لتكون رؤيته إلى جوار الشمس ممكنة .

ولقد أسرع العلماء يبنون مراصدهم فى المناطق الاستوائية . . وعلى ذرى الجبال . . فى انتظار اللحظة الحاسمة التى يمتحنون فيها هذه النظرية الخرافية . .

فماذا كانت النتيجة ؟

إذن أينشتين على صواب . . والضوء مادة . . والأشعة الضوئية لاتسير فى خطوط مستقيمة . . وإنما تنحنى وفقا لخطوط المجال . . هل هذا الرجل شيخ طريقة يعلَم الغيْب ويحسب حساب النجوم ويعرف مقدّراتها دون أن يراها ؟ . . هل هو رجل مكشوف عنه الحجاب ؟ وماهذا السر الذى وضع يده عليه . . وبدأ يفض به مكنونات الوجود ؟

ماحكاية «المجال» الذى يتكلم عنه . . ومامعناه . ومامعنى النسيج الواحد من المكان والزمان ذى الأربعة أبعاد . .

وكيف يخلق الجسم مجالا حوله . . أينشتين يشرح هذا الغموض قائلا . . إن أى جسم يوجد فى مكان وزمان . . فإنه يحدث تغييرات فى الخواص القياسية لهذا المكان والزمان . . فينحنى الفضاء حول هذا الجسم كما تنحنى المكان والزمان . . فينحلى الفضاء حول هذا الجسم كما تنحى وهذه التغييرات هى المجال . وكل ذرة مادية تقع فى هذا المجال تعدّل سيرها وفقًا له . . كما

تتراص برادة الحديد وفقا لخطوط المجال حول المغناطيس . . وعلى هذا الأساس تدور الأرض حول الشمس . . لابسبب قوة جذب الشمس . . ولكن بسبب خصائص المجال الذى تخلقه الشمس حولها . .

الأرض لاتجد مسلكا تسير فيه سوى هذا المسلك الدائرى . . وكل الكواكب محكومة فى مسالكها بخطوط دائرية . . هى انحناءات المجال حول الأجسام الأكبر منها . .

الجاذبية ظاهرة أشبه بظاهرة القصور . . الأجسام قاصرة عن أن تتعدى مجالاتها المرسومة . .

ولايجدى أن نقول إن الفضاء واسع . . فلماذا تأخذ الأجسام هذه المسارات الدائرية وتعجز عن الخروج منها . .

فالبحر واسع أيضا . . ومع هذا حينما تتلقف دوامة حطام إحدى المراكب فإنها تظل تدور به فى مجالاتها لا تفلته . . ويعجز بدوره عن الخروج من قبضتها مع أن البحر واسع لاحدود لآفاقه . .

ونحن نرى الطائرات فى الجو تتجنب المطبّات الهوائية . . والدوامات . . لأنها تفقد تحكمها إذا وقعت فى أسارها . .

ولاشك أن جانبًاكبيرا من غموض المسألة سببه أن عيوننا لاترى هذه الأشياء التى اسمها خطوط المجال . . إنما نحن نتتبعها عن طريق قياس أثرها ثم نحسب حسبتها فى ذهننا عن طريق المعادلات والرموز

الرياضية ثم نبنى لها شكلاً خياليًّا في عقلنا . .

أما حكاية المكان والزمان اللذان يؤلفان نسيجًا واحدًا . . فهى مشكلة المشاكل فى النسبية . . فإننا بحكم حواسنا المحدودة لانستطيع أن نرسم صورة أو شكلا لهذا الشىء ذى الأبعاد الأربعة . .

النهاية

فكرت طويلاً فى حكاية البعد الرابع . . وأعتقد أنى وجدت مثلا يقرّب هذه الحكاية إلى الذهن . . هو مثل السينما المتحركة . . فالشريط السينمائى إذا أدرناه ببطء جدا لنعرض محتوياته على شكل لقطات منفصلة . . فإننا نراه صورة . . بصورة . . كل صورة ذات بعدين طولى وعرضى . . وإذا كانت اللقطات مجسمة فإننا نرى الصورة ذات ثلاثة أبعاد . . ولكنا نراها ساكنة لاحراك فيها . . حتى يدار الشريط بالسرعة المناسبة فنرى أن عقلنا قد أضاف بعداً رابعا إلى الشريط هو الزمن . . فأصبحت اللقطات المنفصلة . . هذا الالتحام بين الزمان والمكان .

وهذه التكملة الحية التى يضيفها الزمن كبعد رابع للصورة فيجعلها صورة نابضة بالواقع والحقيقة . . هو الذى قصده أينشتين بالنسيج الواحد للفضاء . . ذلك النسيج ذو الأبعاد الأربعة الذى يؤلف المجال الهندسى للكون . .

وقد واجهَت أينشتين مشكلة كبرى بعد أن حلل الكون إلى مكوناته الأساسية . المكان . . والزمان . . والكتلة . والمجال . هو أن يبنيه من جديد فى الصورة المعقولة التى نراه عليها . . ويعرّفنا بشكله ككل .

هل هو نهائی محدود . . أم لانهائی لامحدود ؟

هل هو مسطح كالبحر تسبح فيه مجموعات النجوم كالجزر . . أم هو غائر كالبئر . . وهذه النجوم معلقة في أعاقه .

وكان الرأى القديم السائد . .. أن الكون لانهائي . . ولاحدود

وقد لجأ العلماء إلى هذا التخيل حينما اصطدموا بالسؤال المألوف .

لو أن هذا الكون كانت له نهاية . . فماذا وراء هذه النهاية ! ؟ وكانت نتيجة حيرتهم . . أن حاولوا التخلص من الإشكال كله برفض محدودية الكون . . واعتباره لانهائيا لاأول له ولاآخر . . وكان هذا رأى نيوتن . .

وكان الرأى أيضا أن الكون مسطّح كالبحر لاشاطىء له ولاأفق ، وجزر النجوم اللانهائية سابحة فيه . . فى أعداد لامبدأ لها ولامنتهى .

وكانت هذه نتيجة أخرى للإيمان بهندسة واحدة تفسر كل علاقات الكون هى هندسة أقيلدس . .

وهى الهندسة الكلاسيكية التى تعلمناها فى المدارس والتى تعتمد فى كل نظرياتها وتركيباتها على الخطوط المستقيمة . ومن أوليات هذه الهندسة . . أن الخطين المتوازيين لايلتقيان . . وأن أقصر المسافات بين نقطتين هى الخط المستقيم . . وأن مجموع زوايا المثلث ٢ ق .

وأن العلاقة بين محيط الدائرة وقطرها كمية ثابتة هى النسبة التقريبية . . إلى آخر محفوظات كتب الهندسة التي نعرفها .

وكان رأى أينشتين أن هذه الهندسة تنطبق فى الأغراض المحدودة . . وأنها صالحة بالنسبة لمهندس يصمم عربة أو يبنى فيلا . . ولكنها هندسة قاصرة وخاطئة إذا حاولنا إن نفسر بها علاقات الكون الكبير . . أو حتى علاقات الكرة الأرضية . . فإذا حاولنا أن نرسم على الكرة الأرضية مثلَّئًا خياليًّا رأسه عند

القطب الشمالى وقاعدته عند خط الاستواء . . فإن مجموع زوايا هذا المثلث ستكون أكبر من ۲ ق .

ولو رسمنا دائرة واسعة فوق سطح الكرة الأرضية فإن العلاقة بين محيطها وقطرها تكون أقل من النسبة التقريبية . .

ولو حاولنا أن نبحث عن أقصر الخطوط بين لندن ونيويورك فسنجد أنه خط دائرى يصعد شمالا عبر أيسلندا . .

والسبب فى هذا الاختلال الهندسى . . أن سطح الأرض كروى . . والسطوح الكروية لاتنطبق فيها هندسة إقليدس . . وقدكان رأى أينشتين أن الكون شأنه شأن الأرض . . لاتنطبق فيه هندسة إقيلدس . . لأنه ليس نظامًا مسطّحًا . .

ماذا يمكن أن يكون شكل الكون ؟

النظرية النسبية تعطينا مفتاحًا . . فهى تقول بأن كلّ جسم يوجد فى مكان وزمان يخلق حوله مجالاً . . وأن الفضاء حول هذا الجسم يتحدّب وينحنى بمقتضى خطوط هذا المجال . .

ومعنى هذا أن كل مادة توجد فى فضاء الكون تؤدّى إلى انحناء فى سطح هذا الفضاء . . ومعنى هذا أننا لو استطعنا أن نعرف مقدار المادة الكلية فى فضاء الكون لأمكنا أن نعرف مقدار الانحناء فيه وشكل مجاله العام بمقتضى معادلات النسبية . .

ومن حسن الحظ أنه أمكن حساب متوسط كثافة المادة فى

الكون كله . . وبمقتضى هذا الرقم أمكن معرفة أن الكون شكله كروى . .

وأن الفضاء فيه ينحنى ليؤلف شيئًا كفقاعة هائلة . . ومع ذلك فإنه ليس كرة بالمعنى المألوف . . لأن الكرة مجموعة أبعاد مكانية . . أما الكرة الكونية فهى من أبعاد أربعة . . من المكان والزمان . . وهى نهائية ولكنها غير محدودة . . بمعنى أنك لايصح أن تسأل عما بعدها .

وأينشتين يقول إنه لايمكن لحواسنا أن تتخيلها . .

ونصْف قطر الكون بهذا الحساب ٣٥ بليون سنة ضوئية . . وكان ظن أينشتين فى البداية أن الكون فى مجموعه ثابت . . وأن أجزاءه هى التى تتحرك بالنسبة لبعضها البعض . . أما هو ككل فهو ساكن .

ولكن الأرصاد الآن تكاد تكون مجمعة على أن الكون يتضحّم . .

وأن مافيه من نجوم وكواكب وشموس تنفجر فى أقطاره الأربعة متباعدة عن بعضها بسرعة هائلة . . وأن الفضاء ينتفخ كالبالون فتزداد مادته تخلخلا مع الزمن . . وأنه يبرد . . وتنطفىء نجومه وتفنى مادتها وتتحول إلى إشعاع يضيع فى خواء الكون الشاسع . . وبعد بلايين السنين تكون جميع النجوم قد انطفأت . . وتكون

مواقد الحرارة جميعها قد خمدت . . فلا يعود هناك تبادل حرارة ولاأثر ضوء . . ولايعود هناك زمن . . لأن دليلنا على اتجاه الزمن هو الحركة . . والطاقة . . وبدون حركة . لايوجد زمن . لاشىء سوى صقيع وظلام . .

وهذه النظرية التي تقول باتجاه الكون إلى الفناء والنهاية . . تقضى بأن له بداية . .

وهناك نظرية أخرى تقول بتكرار ميلاد الكون وفنائه فى دورات . . وتزعم بأن الكون يتمدد ويبرد . . ثم يعود فينكمش ويسخن وتدب فيه الحياة من جديد . . وأن الكرة الكونية تنقبض وتنبسط وتنبض مثل القلب وتكرر دورات بعثها وفنائها إلى الأبد . . وهناك نظرية ثالثة تقول بأن كلّ هذه الأشعة التي تتبعثر في أرجاء الكون لاتضيع عبئًا وإنما هي تتفاعل مع بعضها لتنتج ذرات بدائية تتجمع فى أتربة دقيقة . . وتتطاير هذه الأتربة تحت ضغط الإشعاعات المنطلقة من المدن النجمية لترتحل إلى القطب الآخر من الدنيا حيث تتجمع فى سحب ترابية تزداد كثافتها سنة بعد سنة حتى تصبح كتلتها هائلة فتبدأ فى التقلص نتيجة ازدياد الجاذبية بين ذراتها ، وبتقلُّصها ترتفع درجة حرارتها وتتوهَّج ويدب فيها النشاط وتتحول إلى أنوية ملتهبة مثل السدم الجبارة . . وتبدأ تدور حول نفسها . . وتتفكك إلى مجاميع من النجوم وتبدأ كونًا جديدًا . . في

الوقت الذى يكون فيه الكون الأصلى الذى صدرت عنه قد دبّ فيه الفناء وشاخ وانطفأ وتحول إلى صقيع وظلام . . وتعود الإشعاعات المنطلقة من هذه الثريات الجديدة . . فتتجمع فى طرف الكون الآخر لتكون ذرات بدائية وسحبًا ترابية . . إلخ . .

وتستمر الدورة الأبدية . .

وأينشتين لم يحاول فى نظريته أن يجاوب على هذه الأسئلة . . وإنما تركها للفلاسفة ورجال الدين . . واكتفى بأن ينظر من بعيد فى رهبة . .

كان يدرك فى تواضع أن العلم عاجز عن رؤية البداية والنهاية . . قاصر عن فهم ماهية أى شىء . .

كل مايستطيعه العلم هو أن يقيس كميّات ، ويتعرف على العلاقات التى تربط هذه الكميات ، ويكتشف القوانين التى تجمعها معًا فى شمل واحد . .

وكان كل مطلبه أن يكشف القوانين التى تفسّر حركات كل الأجرام السهاوية فى مداراتها . . وكان يعتقد بانسجام الوجود فى وحدة . . وكان يرى أن عالم الذرّة الصغير هو صورة من عالم الأفلاك

المواجع

ABC of Relativity-Russel Relativity for the Layman-Coleman The Universe and Dr. Einstein-Lincoln Barnett Space time and gravitation-Eddington. What is Relativity Landau.

Relativity for the million-Martin gardnen

الزمان الوجودى – عبد الرحمن بدوى . النسبية الخاصة – الدكتور مصطفى مشرفة . الكبير . . وأنه منسجم معه فى سلك واحد من القوانين والدساتير الطبيعية . .

وكان يرى أن المغنطيسية الكهربية التى تمسك بالذرات والجزيئات . . لاتختلف كثيرًا عن مجالات الجاذبية التى تمسك بالمدن النجمية والمجرات فى أفلاكها .

وكان يبحث عن مجال موحد يضم الاثنين . وكان آخر ماقدمه للعلم سلسلة من المعادلات . . حاول فيها أن يضمّ قوانين الذرّة إلى قوانين النسبيّة بحثًا عن هذا المجال . . وقبل أن يموت لم ينس أن يوصى بمحّه للبحوث العلمية . . وكانت هذه آخر هدّية قدمها إلى الدنيا . .